
nix.dev

nix.dev contributors

Jan 01, 2025

CONTENTS

1 Install Nix 1
1.1 Verify installation . 2

2 Tutorials 3
2.1 First steps . 3

2.1.1 Ad hoc shell environments . 3
2.1.2 Reproducible interpreted scripts . 7
2.1.3 Declarative shell environments with shell.nix . 9
2.1.4 Towards reproducibility: pinning Nixpkgs . 12

2.2 Nix language basics . 13
2.2.1 Overview . 13
2.2.2 Names and values . 16
2.2.3 Functions . 26
2.2.4 Function libraries . 32
2.2.5 Impurities . 35
2.2.6 Derivations . 37
2.2.7 Worked examples . 38
2.2.8 References . 40
2.2.9 Next steps . 40

2.3 Packaging existing software with Nix . 41
2.3.1 Introduction . 41
2.3.2 Your first package . 42
2.3.3 A package with dependencies . 45
2.3.4 Finding packages . 48
2.3.5 Fixing build failures . 51
2.3.6 A successful build . 53
2.3.7 References . 53
2.3.8 Next steps . 53

2.4 Package parameters and overrides with callPackage . 53
2.4.1 Overview . 53
2.4.2 Automatic function calls . 54
2.4.3 Parameterised builds . 55

2.5 Overrides . 56
2.5.1 Interdependent package sets . 57
2.5.2 Summary . 58
2.5.3 References . 58
2.5.4 Next steps . 58

2.6 Working with local files . 58
2.6.1 File sets . 59
2.6.2 Example project . 60
2.6.3 Adding files to the Nix store . 60
2.6.4 Difference . 61
2.6.5 Missing files . 63
2.6.6 Union (explicitly exclude files) . 64

i

2.6.7 Filter . 65
2.6.8 Union (explicitly include files) . 65
2.6.9 Matching files tracked by Git . 66
2.6.10 Intersection . 67
2.6.11 Conclusion . 68

2.7 Cross compilation . 68
2.7.1 What do you need? . 68
2.7.2 Platforms . 68
2.7.3 What’s a target platform? . 68
2.7.4 Determining the host platform config . 69
2.7.5 Choosing the host platform with Nix . 69
2.7.6 Specifying the host platform . 70
2.7.7 Cross compiling for the first time . 71
2.7.8 Real-world cross compiling of a Hello World example 71
2.7.9 Developer environment with a cross compiler . 72
2.7.10 Next steps . 73

2.8 Module system . 73
2.8.1 What do you need? . 74
2.8.2 How long will it take? . 74

2.9 NixOS . 98
2.9.1 Creating NixOS images . 98
2.9.2 Testing and deploying NixOS configurations . 98
2.9.3 Scaling up . 98

3 Guides 135
3.1 Recipes . 135

3.1.1 Configure Nix to use a custom binary cache . 135
3.1.2 Automatic environment activation with direnv . 136
3.1.3 Dependencies in the development shell . 137
3.1.4 Automatically managing remote sources with npins 138
3.1.5 Setting up a Python development environment . 140
3.1.6 Setting up post-build hooks . 142
3.1.7 Continuous integration with GitHub Actions . 144

3.2 Best practices . 145
3.2.1 URLs . 145
3.2.2 Recursive attribute set rec { ... } . 146
3.2.3 with scopes . 146
3.2.4 <...> lookup paths . 147
3.2.5 Reproducible Nixpkgs configuration . 148
3.2.6 Updating nested attribute sets . 148
3.2.7 Reproducible source paths . 149

3.3 Troubleshooting . 149
3.3.1 What to do if a binary cache is down or unreachable? 149
3.3.2 How to force Nix to re-check if something exists in the binary cache? 150
3.3.3 How to fix: error: querying path in database: database disk

image is malformed . 150
3.3.4 How to fix: error: current Nix store schema is version 10, but

I only support 7 . 150
3.3.5 How to fix: writing to file: Connection reset by peer 150
3.3.6 macOS update breaks Nix installation . 151

3.4 Frequently Asked Questions . 151
3.4.1 Nix . 151
3.4.2 NixOS . 152

4 Reference 155
4.1 Glossary . 155
4.2 Nix reference manual . 156
4.3 Further reading . 156

ii

4.3.1 Nix language tutorials . 156
4.3.2 Other articles . 157
4.3.3 Other videos . 157

4.4 Pinning Nixpkgs . 158
4.4.1 Possible URL values . 158
4.4.2 Examples . 158
4.4.3 Finding specific commits and releases . 159

5 Concepts 161
5.1 Flakes . 161

5.1.1 What are flakes? . 161
5.1.2 Why are flakes controversial? . 162
5.1.3 Should I use flakes in my project? . 163
5.1.4 Further reading . 164

5.2 Frequently Asked Questions . 164
5.2.1 What is the origin of the name Nix? . 164
5.2.2 What are flakes? . 164
5.2.3 Which channel branch should I use? . 164
5.2.4 Are there any impurities left in sandboxed builds? . 165

6 Contributing 167
6.1 How to contribute . 167

6.1.1 Getting started . 167
6.1.2 Report an issue . 168
6.1.3 Contribute to Nix . 168
6.1.4 Contribute to Nixpkgs . 169
6.1.5 Contribute to NixOS . 169

6.2 How to get help . 169
6.3 How to get help . 169

6.3.1 How to find maintainers . 170
6.3.2 Which communication channels to use . 170
6.3.3 Other venues . 171

6.4 Contributing documentation . 171
6.4.1 Getting started . 171
6.4.2 Feedback . 171
6.4.3 Licensing and attribution . 172

7 Acknowledgements 183
7.1 Sponsoring . 183
7.2 History . 183

Index 185

iii

iv

CHAPTER

ONE

INSTALL NIX

Requirements:
• Prior to installation, you might first need to install xz-utils or similar for decompressing the Nix binary
tarball (.tar.xz) that will be downloaded via the scripts below.

Linux

Install Nix via the recommended multi-user installation3:

$ curl -L https://nixos.org/nix/install | sh -s -- --daemon

On Arch Linux, you can alternatively install Nix through pacman4.

macOS

Install Nix via the recommended multi-user installation5:

$ curl -L https://nixos.org/nix/install | sh

Important: Updating to macOS 15 Sequoia
If you recently updated to macOS 15 Sequoia and are getting the error

error: the user '_nixbld1' in the group 'nixbld' does not exist

when runningNix commands, refer to GitHub issueNixOS/nix#108926 for instructions to fix your installation without
reinstalling.

Windows (WSL2)

Install Nix via the recommended single-user installation7:

$ curl -L https://nixos.org/nix/install | sh -s -- --no-daemon

However, if you have systemd support8 enabled, install Nix via the recommended multi-user installation9:
3 https://nix.dev/manual/nix/stable/installation/multi-user.html
4 https://wiki.archlinux.org/title/Nix#Installation
5 https://nix.dev/manual/nix/stable/installation/multi-user.html
6 https://github.com/NixOS/nix/issues/10892
7 https://nix.dev/manual/nix/stable/installation/single-user.html
8 https://learn.microsoft.com/en-us/windows/wsl/wsl-config#systemd-support
9 https://nix.dev/manual/nix/stable/installation/multi-user.html

1

https://nix.dev/manual/nix/stable/installation/multi-user.html
https://wiki.archlinux.org/title/Nix#Installation
https://nix.dev/manual/nix/stable/installation/multi-user.html
https://github.com/NixOS/nix/issues/10892
https://nix.dev/manual/nix/stable/installation/single-user.html
https://learn.microsoft.com/en-us/windows/wsl/wsl-config#systemd-support
https://nix.dev/manual/nix/stable/installation/multi-user.html

nix.dev

$ curl -L https://nixos.org/nix/install | sh -s -- --daemon

Docker

Start a Docker shell with Nix:

$ docker run -it nixos/nix

Or start a Docker shell with Nix exposing a workdir directory:

$ mkdir workdir
$ docker run -it -v $(pwd)/workdir:/workdir nixos/nix

The workdir example from above can also be used to start hacking on Nixpkgs:

$ git clone git@github.com:NixOS/nixpkgs
$ docker run -it -v $(pwd)/nixpkgs:/nixpkgs nixos/nix
bash-5.1# nix-build -I nixpkgs=/nixpkgs -A hello
bash-5.1# find ./result # this symlink points to the build package

1.1 Verify installation

Check the installation by opening a new terminal and typing:

$ nix --version
nix (Nix) 2.11.0

2 Chapter 1. Install Nix

CHAPTER

TWO

TUTORIALS

These sections contain a series of lessons to get started.

2.1 First steps

This tutorial series is where you should start learning Nix.
In these lessons, you will use basic Nix commands to obtain almost any piece of software, create development envi-
ronments on the fly, and learn how to make reproducible scripts. You will also learn to read the Nix language, and
later use it to build portable, reproducible development environments.

2.1.1 Ad hoc shell environments

In a Nix shell environment, you can immediately use any program packaged with Nix, without installing it perma-
nently.
You can also share the command invoking such a shell with others, and it will work on all Linux distributions, WSL,
and macOS1.

Create a shell environment

Once you install Nix (page 1), you can use it to create new shell environments with programs that you want to use.
In this section you will run two exotic programs called cowsay and lolcat that you will probably not have installed
on your machine:

$ cowsay no can do
The program ‘cowsay’ is currently not installed.

$ echo no chance | lolcat
The program ‘lolcat’ is currently not installed.

Use nix-shell with the -p (--packages) option to specify that we need the cowsay and lolcat packages:

Note: The first invocation of nix-shell for these packages may take a while to download all dependencies.

$ nix-shell -p cowsay lolcat
these 3 derivations will be built:

/nix/store/zx1j8gchgwzfjn7sr4r8yxb7a0afkjdg-builder.pl.drv
/nix/store/h9sbaa2k8ivnihw2czhl5b58k0f7fsfh-lolcat-100.0.1.drv
...

(continues on next page)
1 Not all packages are supported for both Linux and macOS. Especially support for graphical programs may vary.

3

nix.dev

(continued from previous page)

[nix-shell:~]$

Within the Nix shell, you can use the programs provided by these packages:

[nix-shell:~]$ cowsay Hello, Nix! | lolcat

Type exit or press CTRL-D to exit the shell, and the programs won’t be available anymore.

[nix-shell:~]$ exit
exit

$ cowsay no more
The program ‘cowsay’ is currently not installed.

$ echo all gone | lolcat
The program ‘lolcat’ is currently not installed.

Running programs once

You can go even faster, by running any program directly:

$ nix-shell -p cowsay --run "cowsay Nix"

If the command consists only of the program name, no quotes are needed:

$ nix-shell -p hello --run hello

Search for packages

What can you put in a shell environment? If you can think of it, there’s probably a Nix package of it.

Tip: Enter the program name you want to run in search.nixos.org10 to find packages that provide it.

For the following example, find the package names for these programs:
• git

• nvim

• npm

In the search results, each item shows the package name, and the details list the available programs.2

10 https://search.nixos.org/packages
2 A package name is not the same as a program name. Many packages provide multiple programs, or no programs at all if they are libraries.

Even for packages that provide exactly one program, the package and program name are not necessarily the same.

4 Chapter 2. Tutorials

https://search.nixos.org/packages

nix.dev

Run any combination of programs

Once you have the package name, you can start a shell with that package. The -p (--packages) argument can
take multiple package names.
Start a Nix shell with the packages providing git, nvim, and npm. Again, the first invocation may take a while to
download all dependencies.

$ nix-shell -p git neovim nodejs
these 9 derivations will be built:

/nix/store/7gz8jyn99kw4k74bgm4qp6z487l5ap06-packdir-start.drv
/nix/store/d6fkgxc3b04m85wrhg6j0l5y0ray82l7-packdir-opt.drv
/nix/store/da6njv7r0zzc2n54n2j54g2a5sbi4a5i-manifest.vim.drv
/nix/store/zs4jb2ybr4rcyzwq0dagg9rlhlc368h6-builder.pl.drv
/nix/store/g8sl2xnsshfrz9f39ki94k8p15vp3xd7-vim-pack-dir.drv
/nix/store/jmxkg8b1psk52awsvfziy9nq6dwmxmjp-luajit-2.1.0-2022-10-04-env.drv
/nix/store/kn83q8yk6ds74zgyklrjhvv5wkv5wmch-python3-3.10.9-env.drv
/nix/store/m445wn3vizcgg7syna2cdkkws3kk1gq8-neovim-ruby-env.drv
/nix/store/r2wa882mw99c311a4my7hcis9lq3kp3v-neovim-0.8.1.drv

these 151 paths will be fetched (186.43 MiB download, 1018.20 MiB unpacked):
/nix/store/046zxlxhq4srm3ggafkymx794bn1jksc-bzip2-1.0.8
/nix/store/0p1jxcb7b4p8jhhlf8qnjc4cqwy89460-unibilium-2.1.1
/nix/store/0q4fpnqmg8liqraj7zidylcyd062f6z0-perl5.36.0-URI-5.05
...

[nix-shell:~]$

Check package versions

Check that you have the specific version of these programs provided by Nix, even if you had any of them already
installed on your machine.

[nix-shell:~]$ which git
/nix/store/3cdi52xh6lk3h1fb51jkxs3p561p37wg-git-2.38.3/bin/git

[nix-shell:~]$ git --version
git version 2.38.3

[nix-shell:~]$ which nvim
/nix/store/ynskzgkf07lmrrs3cl2kzr9ah487lwab-neovim-0.8.1/bin/nvim

[nix-shell:~]$ nvim --version | head -1
NVIM v0.8.1

[nix-shell:~]$ which npm
/nix/store/q12w83z0i5pi1y0m6am7qmw1r73228sh-nodejs-18.12.1/bin/npm

[nix-shell:~]$ npm --version
8.19.2

2.1. First steps 5

nix.dev

Nested shell sessions

If you need an additional program temporarily, you can run a nested Nix shell. The programs provided by the specified
packages will be added to the current environment.

[nix-shell:~]$ nix-shell -p python3
this path will be fetched (11.42 MiB download, 62.64 MiB unpacked):

/nix/store/pwy30a7siqrkki9r7xd1lksyv9fg4l1r-python3-3.10.11
copying path '/nix/store/pwy30a7siqrkki9r7xd1lksyv9fg4l1r-python3-3.10.11' from
↪→'https://cache.nixos.org'...

[nix-shell:~]$ python --version
Python 3.10.11

Exit the shell as usual to return to the previous environment.

Towards reproducibility

These shell environments are very convenient, but the examples so far are not reproducible yet. Running these
commands on another machine may fetch different versions of packages, depending on when Nix was installed there.
What do we mean by reproducible? A fully reproducible example would give exactly the same results no matter when
or where you run the command. The environment provided would be identical each time.
The following example creates a fully reproducible environment. You can run it anywhere, anytime to obtain the
exact same version of the git.

$ nix-shell -p git --run "git --version" --pure -I nixpkgs=https://github.com/
↪→NixOS/nixpkgs/tarball/2a601aafdc5605a5133a2ca506a34a3a73377247
...
git version 2.33.1

There are three things going on here:
1. --run executes the given Bash command11 within the environment created by Nix, and exits when it’s done.

You can use this with nix-shell whenever you want to quickly run a program you don’t have installed on
your machine.

2. --pure discards most environment variables set on your system when running the shell.
It means that only the git provided by Nix is available inside that shell. This is useful for simple one-liners
such as in the example. While developing, however, you will usually want to have your editor and other tools
around. Therefore we recommend to omit --pure for development environments, and to add it only when
the extra isolation is needed.

3. -I determines what to use as a source of package declarations.
Here we provided a specific Git revision of nixpkgs12, leaving no doubt about which version of the packages
in that collection will be used.

11 https://www.gnu.org/software/bash/manual/bash.html#Shell-Commands
12 https://github.com/NixOS/nixpkgs/tree/2a601aafdc5605a5133a2ca506a34a3a73377247

6 Chapter 2. Tutorials

https://www.gnu.org/software/bash/manual/bash.html#Shell-Commands
https://github.com/NixOS/nixpkgs/tree/2a601aafdc5605a5133a2ca506a34a3a73377247

nix.dev

References

• Nix manual: nix-shell13 (or run man nix-shell)
• Nix manual: -I option14

Next steps

• Reproducible interpreted scripts (page 7) – use Nix for reproducible scripts
• Nix language basics (page 13) – learn reading the Nix language, which is used to declare packages and config-
urations

• Declarative shell environments with shell.nix (page 9) – create reproducible shell environments with a declarative
configuration file

• Towards reproducibility: pinning Nixpkgs (page 12) – learn different ways of specifying exact versions of pack-
age sources

If you’re done trying out Nix for now, you may want to free up some disk space occupied by the different versions of
programs you downloaded by running the examples:

$ nix-collect-garbage

2.1.2 Reproducible interpreted scripts

In this tutorial, you will learn how to use Nix to create and run reproducible interpreted scripts, also known as
shebang15 scripts.

Requirements

• A working Nix installation (page 1)
• Familiarity with Bash16

A trivial script with non-trivial dependencies

Take the following script, which fetches the content XML of a URL, converts it to JSON, and formats it for better
readability:

#! /bin/bash

curl https://github.com/NixOS/nixpkgs/releases.atom | xml2json | jq .

It requires the programs curl, xml2json, and jq. It also requires the bash interpreter. If any of these depen-
dencies are not present on the system running the script, it will fail partially or altogether.
With Nix, we can declare all dependencies explicitly, and produce a script that will always run on any machine that
supports Nix and the required packages taken from Nixpkgs.

13 https://nix.dev/manual/nix/stable/command-ref/nix-shell
14 https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I
15 https://en.wikipedia.org/wiki/Shebang_(Unix)
16 https://www.gnu.org/software/bash/

2.1. First steps 7

https://nix.dev/manual/nix/stable/command-ref/nix-shell
https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://www.gnu.org/software/bash/

nix.dev

The script

A shebang17 determines which program to use for running an interpreted script.
We will use the shebang line #!/usr/bin/env nix-shell.
env18 is a program available on most modern Unix-like operating systems at the file system path /usr/bin/env.
It takes a command name as argument and will run the first executable by that name it finds in the directories listed
in the environment variable $PATH.
We use nix-shell as a shebang interpreter19. It takes the following parameters relevant for our use case:

• -i tells which program to use for interpreting the rest of the file
• --pure excludes most environment variables when the script is run
• -p lists packages that should be present in the interpreter’s environment
• -I explicitly sets the search path20 for packages

More details on the options can be found in the nix-shell reference documentation21.
Create a file named nixpkgs-releases.sh with the following content:

#!/usr/bin/env nix-shell
#! nix-shell -i bash --pure
#! nix-shell -p bash cacert curl jq python3Packages.xmljson
#! nix-shell -I nixpkgs=https://github.com/NixOS/nixpkgs/archive/
↪→2a601aafdc5605a5133a2ca506a34a3a73377247.tar.gz

curl https://github.com/NixOS/nixpkgs/releases.atom | xml2json | jq .

The first line is a standard shebang. The additional shebang lines are a Nix-specific construct:
• With the -i option, bash is specified as the interpreter for the rest of the file.
• In this case, the --pure option is enabled to prevent the script from implicitly using programs that may
already exist on the system on which the script is run.

• The -p option lists the packages required for the script to run.
The command xml2json is provided by the package python3Packages.xmljson, while bash, jq,
and curl are provided by packages of the same name. cacert must be present for SSL authentication to
work.

Tip: Use search.nixos.org22 to find packages providing the program you need.

• The parameter of -I refers to a specific Git commit of the Nixpkgs repository.
This ensures that the script will always run with the exact same package versions, everywhere.

Make the script executable:

chmod +x nixpkgs-releases.sh

Run the script:

./nixpkgs-releases.sh

17 https://en.wikipedia.org/wiki/Shebang_(Unix)
18 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/env.html
19 https://nix.dev/manual/nix/stable/command-ref/nix-shell.html#use-as-a--interpreter
20 https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I
21 https://nix.dev/manual/nix/stable/command-ref/nix-shell.html#options
22 https://search.nixos.org/packages

8 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/env.html
https://nix.dev/manual/nix/stable/command-ref/nix-shell.html#use-as-a--interpreter
https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I
https://nix.dev/manual/nix/stable/command-ref/nix-shell.html#options
https://search.nixos.org/packages

nix.dev

Next steps

• Nix language basics (page 13) to learn about the Nix language, which is used to declare packages and configu-
rations.

• Declarative shell environments with shell.nix (page 9) to create reproducible shell environments with a declar-
ative configuration file.

• Garbage Collection23 – free up storage used by the programs made available through Nix

2.1.3 Declarative shell environments with shell.nix

Overview

Declarative shell environments allow you to:
• Automatically run bash commands during environment activation
• Automatically set environment variables
• Put the environment definition under version control and reproduce it on other machines

What will you learn?

In the Ad hoc shell environments (page 3) tutorial, you learned how to imperatively create shell environments using
nix-shell -p. This is great when you want to quickly access tools without installing them permanently. You
also learned how to execute that command with a specific Nixpkgs revision using a Git commit as an argument, to
recreate the same environment used previously.
In this tutorial we’ll take a look at how to create reproducible shell environments with a declarative configuration in
a Nix file. This file can be shared with anyone to recreate the same environment on a different machine.

How long will it take?

30 minutes

What do you need?

• Familiarity with the Unix shell
• A rudimentary understanding of the Nix language (page 13)

Entering a temporary shell

Suppose we want an environment where cowsay and lolcat are available. The simplest possible way to accom-
plish this is via the nix-shell -p command:

$ nix-shell -p cowsay lolcat

This command works, but there’s a number of drawbacks:
• You have to type out -p cowsay lolcat every time you enter the shell.
• It doesn’t (ergonomically) allow you any further customization of your shell environment.

A better solution is to create our shell environment from a shell.nix file.
23 https://nix.dev/manual/nix/stable/package-management/garbage-collection.html

2.1. First steps 9

https://nix.dev/manual/nix/stable/package-management/garbage-collection.html

nix.dev

A basic shell.nix file

Create a file called shell.nix with these contents:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-24.05";
3 pkgs = import nixpkgs { config = {}; overlays = []; };
4 in
5

6 pkgs.mkShellNoCC {
7 packages = with pkgs; [
8 cowsay
9 lolcat
10];
11 }

Detailed explanation

We use a version of Nixpkgs pinned to a release branch (page 158). If you followed the Ad hoc shell environments
(page 3) tutorial and don’t want to download all dependencies again, specify the exact same revision as in the section
Towards reproducibility (page 6):

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/

↪→2a601aafdc5605a5133a2ca506a34a3a73377247";
3 pkgs = import nixpkgs { config = {}; overlays = []; };
4 in

We explicitly set config and overlays to avoid them being inadvertently overridden by global configuration24.
mkShellNoCC is a function that takes as an argument an attribute set. Here we give it an attribute packages
with a list containing two items from the pkgs attribute set.

Side note on mkShell

nix-shell and mkShell were originally conceived as a way to construct a shell environment containing the tools
needed to debug package builds25, such as Make or GCC. Only later did it become widely used as a general way to
make temporary environments for other purposes. mkShellNoCC is a function that produces such an environment,
but without a compiler toolchain.
You may encounter examples of mkShell or mkShellNoCC that add packages to the buildInputs or na-
tiveBuildInputs attributes instead. mkShellNoCC is a wrapper around mkDerivation26, so it takes the
same arguments as mkDerivation, such as buildInputs or nativeBuildInputs. The packages at-
tribute argument to mkShellNoCC is simply an alias for nativeBuildInputs.
Enter the environment by running nix-shell in the same directory as shell.nix:

Note: The first invocation of nix-shell on this file may take a while to download all dependencies.

$ nix-shell
[nix-shell]$ cowsay hello | lolcat

nix-shell by default looks for a file called shell.nix in the current directory and builds a shell environment
from the Nix expression in this file. Packages defined in the packages attribute will be available in $PATH.

24 https://nixos.org/manual/nixpkgs/stable/#chap-packageconfig
25 https://nixos.org/manual/nixpkgs/stable/#sec-tools-of-stdenv
26 https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell

10 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#chap-packageconfig
https://nixos.org/manual/nixpkgs/stable/#sec-tools-of-stdenv
https://nixos.org/manual/nixpkgs/stable/#sec-tools-of-stdenv
https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell

nix.dev

Environment variables

You may want to automatically export certain environment variables when you enter a shell environment.
Set GREETING so it can be used in the shell environment:

let
nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-24.05";
pkgs = import nixpkgs { config = {}; overlays = []; };

in

pkgs.mkShellNoCC {
packages = with pkgs; [

cowsay
lolcat

];

+ GREETING = "Hello, Nix!";
}

Any attribute name passed to mkShellNoCC that is not reserved otherwise and has a value which can be coerced
to a string will end up as an environment variable.
Try it out! Exit the shell by typing exit or pressing Ctrl+D, then start it again with nix-shell.

[nix-shell]$ echo $GREETING

Warning: Some variables are protected from being set as described above.
For example, the shell prompt format for most shells is set by the PS1 environment variable, but nix-shell
already sets this by default, and will ignore a PS1 attribute set in the argument.
If you need to override these protected environment variables, use the shellHook attribute as described in the
next section.

Startup commands

You may want to run some commands before entering the shell environment. These commands can be placed in the
shellHook attribute provided to mkShellNoCC.
Set shellHook to output a colorful greeting:

let
nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-24.05";
pkgs = import nixpkgs { config = {}; overlays = []; };

in

pkgs.mkShellNoCC {
packages = with pkgs; [

cowsay
lolcat

];

GREETING = "Hello, Nix!";
+
+ shellHook = ''
+ echo $GREETING | cowsay | lolcat
+ '';
}

2.1. First steps 11

nix.dev

Try it again! Exit the shell by typing exit or pressing Ctrl+D, then start it again with nix-shell to observe the
effect.

References

• mkShell documentation27

• Nixpkgs shell functions and utilities28 documentation
• nix-shell documentation29

Next steps

• Nix language basics (page 13)
• Automatic environment activation with direnv (page 136)
• Dependencies in the development shell (page 137)
• Automatically managing remote sources with npins (page 138)

2.1.4 Towards reproducibility: pinning Nixpkgs

In various Nix examples, you’ll often see the following:

1 { pkgs ? import <nixpkgs> {} }:
2

3 ...

Note: <nixpkgs> points to the file system path of some revision of Nixpkgs. Find more information on lookup
paths (page 26) in Nix language basics (page 13).

This is a convenient way to quickly demonstrate a Nix expression and get it working by importing Nix packages.
However, the resulting Nix expression is not fully reproducible.

Pinning packages with URLs inside a Nix expression

To create fully reproducible Nix expressions, we can pin an exact version of Nixpkgs.
The simplest way to do this is to fetch the required Nixpkgs version as a tarball specified via the relevant Git commit
hash:

1 { pkgs ? import (fetchTarball "https://github.com/NixOS/nixpkgs/archive/
↪→06278c77b5d162e62df170fec307e83f1812d94b.tar.gz") {}

2 }:
3

4 ...

Picking the commit can be done via status.nixos.org30, which lists all the releases and the latest commit that has
passed all tests.
When choosing a commit, it is recommended to follow either

• the latest stable NixOS release by using a specific version, such as nixos-21.05, or
27 https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell
28 https://nixos.org/manual/nixpkgs/stable/#ssec-stdenv-functions
29 https://nix.dev/manual/nix/stable/command-ref/nix-shell
30 https://status.nixos.org/

12 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell
https://nixos.org/manual/nixpkgs/stable/#ssec-stdenv-functions
https://nix.dev/manual/nix/stable/command-ref/nix-shell
https://status.nixos.org/

nix.dev

• the latest unstable release via nixos-unstable.

Next steps

• For more examples and details of the different ways to pin nixpkgs, see Pinning Nixpkgs (page 158).
• Automatically managing remote sources with npins (page 138)

2.2 Nix language basics

The Nix language is designed for conveniently creating and composing derivations – precise descriptions of how
contents of existing files are used to derive new files. It is a domain-specific, purely functional, lazily evaluated,
dynamically typed programming language.

Notable uses of the Nix language
• Nixpkgs

The largest, most up-to-date software distribution in the world, and written in the Nix language.
• NixOS

A Linux distribution that can be configured fully declaratively and is based on Nix and Nixpkgs.
Its underlying modular configuration system is written in the Nix language, and uses packages from Nixpkgs.
The operating system environment and services it provides are configured with the Nix language.

Youmay quickly encounter Nix language expressions that look very complicated. As with any programming language,
the required amount of Nix language code closely matches the complexity of the problem it is supposed to solve, and
reflects how well the problem – and its solution – is understood. Building software is a complex undertaking, and Nix
both exposes and allows managing this complexity with the Nix language.
Yet, the Nix language itself has only a few basic concepts that will be introduced in this tutorial, and which can be
combined arbitrarily. What may look complicated comes not from the language, but from how it is used.

2.2.1 Overview

This is an introduction to reading the Nix language, for the purpose of following other tutorials and examples.
Using the Nix language in practice entails multiple things:

• Language: syntax and semantics
• Libraries: builtins and pkgs.lib
• Developer tools: testing, debugging, linting, formatting, …
• Generic build mechanisms: stdenv.mkDerivation, trivial builders, …
• Composition and configuration mechanisms: override, overrideAttrs, overlays, callPackage, …
• Ecosystem-specific packaging mechanisms: buildGoModule, buildPythonApplication, …
• NixOS module system: config, option, …

This tutorial only covers the most important language features, briefly discusses libraries, and at the end will direct
you to reference material and resources on the other components.

2.2. Nix language basics 13

nix.dev

What will you learn?

This tutorial should enable you to read typical Nix language code and understand its structure. Its goal is to highlight
where the Nix language may differ from languages you are used to.
It therefore shows the most common and distinguishing patterns in the Nix language:

• Assigning names and accessing values (page 16)
• Declaring and calling functions (page 26)
• Built-in and library functions (page 32)
• Impurities (page 35) to obtain build inputs
• Derivations (page 37) that describe build tasks

Important: This tutorial does not explain all Nix language features in detail and does not go into specifics of
syntactical rules. For instance, we skip over commonplace constructs such as if ... then ... else
See the Nix manual31 for a full language reference.

What do you need?

• Familiarity with software development
• Familiarity with Unix shell, to read command line examples
• A Nix installation (page 1) to run the examples

How long does it take?

• No experience with functional programming: 2 hours
• Familiar with functional programming: 1 hour
• Proficient with functional programming: 30 minutes

We recommend to run all examples. Play with them to validate your assumptions and test what you have learned.
Read detailed explanations if you want to make sure you fully understand the examples.

How to run the examples?

• A piece of Nix language code is a Nix expression.
• Evaluating a Nix expression produces a Nix value.
• The content of a Nix file (file extension .nix) is a Nix expression.

Note: To evaluate means to transform an expression into a value according to the language rules.

This tutorial contains many examples of Nix expressions. Each one is followed by the expected evaluation result.
The following example is a Nix expression adding two numbers:

1 + 2

3

31 https://nix.dev/manual/nix/stable/language/index.html

14 Chapter 2. Tutorials

https://nix.dev/manual/nix/stable/language/index.html

nix.dev

Interactive evaluation

Use nix repl32 to evaluate Nix expressions interactively (by typing them on the command line):

$ nix repl
Welcome to Nix 2.13.3. Type :? for help.

nix-repl> 1 + 2
3

Note: The Nix language uses lazy evaluation, and nix repl by default only computes values when needed.
Some examples show a fully evaluated data structure for clarity. If your output does not match the example, try
prepending :p to the input expression.
Example:

nix-repl> { a.b.c = 1; }
{ a = { ... }; }

nix-repl> :p { a.b.c = 1; }
{ a = { b = { c = 1; }; }; }

Type :q to exit nix repl33.

Evaluating Nix files

Use nix-instantiate --eval34 to evaluate the expression in a Nix file.

$ echo 1 + 2 > file.nix
$ nix-instantiate --eval file.nix
3

Detailed explanation

The first command writes 1 + 2 to a file file.nix in the current directory. The contents of file.nix are now
1 + 2, which you can check with

$ cat file.nix
1 + 2

The second command runs nix-instantiate with the --eval option on file.nix, which reads the file and
evaluates the contained Nix expression. The resulting value is printed as output.
--eval is required to evaluate the file and do nothing else. If --eval is omitted, nix-instantiate expects
the expression in the given file to evaluate to a special value called a derivation, which we will come back to at the
end of this tutorial in Derivations (page 37).

Note: nix-instantiate --eval will try to read from default.nix if no file name is specified.

$ echo 1 + 2 > default.nix
$ nix-instantiate --eval
3

32 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl.html
33 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl.html
34 https://nix.dev/manual/nix/stable/command-ref/nix-instantiate.html

2.2. Nix language basics 15

https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl.html
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl.html
https://nix.dev/manual/nix/stable/command-ref/nix-instantiate.html

nix.dev

Note: The Nix language uses lazy evaluation, and nix-instantiate by default only computes values when
needed.
Some examples show a fully evaluated data structure for clarity. If your output does not match the example, try
adding the --strict option to nix-instantiate.
Example:

$ echo "{ a.b.c = 1; }" > file.nix
$ nix-instantiate --eval file.nix
{ a = <CODE>; }

$ echo "{ a.b.c = 1; }" > file.nix
$ nix-instantiate --eval --strict file.nix
{ a = { b = { c = 1; }; }; }

Notes on whitespace

White space is used to delimit lexical tokens35, where required. It is otherwise insignificant.
Line breaks, indentation, and additional spaces are for the reader’s convenience.
The following are equivalent:

let
x = 1;
y = 2;

in x + y

3

let x=1;y=2;in x+y

3

2.2.2 Names and values

Values in the Nix language can be primitive data types, lists, attribute sets, and functions.
We show examples of primitive data types and lists in the context of attribute sets (page 17). Later in this section
we cover special features of character strings: string interpolation (page 23), file system paths (page 25), and indented
strings (page 24). We deal with functions (page 26) separately.
Attribute sets (page 17) and let expressions (page 18) are used to assign names to values. Assignments are denoted
by a single equal sign (=).
Whenever you encounter an equal sign (=) in Nix language code:

• On its left is the assigned name.
• On its right is the value, delimited by a semicolon (;).

35 https://en.wikipedia.org/wiki/Lexical_analysis#Lexical_token_and_lexical_tokenization

16 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/Lexical_analysis#Lexical_token_and_lexical_tokenization

nix.dev

Attribute set { ... }

An attribute set is a collection of name-value-pairs, where names must be unique.
The following example shows all primitive data types, lists, and attribute sets.

Note: If you are familiar with JSON, imagine the Nix language as JSON with functions.
Nix language data types without functions work just like their counterparts in JSON and look very similar.

Nix

1 {
2 string = "hello";
3 integer = 1;
4 float = 3.141;
5 bool = true;
6 null = null;
7 list = [1 "two" false];
8 attribute-set = {
9 a = "hello";
10 b = 2;
11 c = 2.718;
12 d = false;
13 }; # comments are supported
14 }

JSON

{
"string": "hello",
"integer": 1,
"float": 3.141,
"bool": true,
"null": null,
"list": [1, "two", false],
"object": {
"a": "hello",
"b": 1,
"c": 2.718,
"d": false

}
}

Note:
• Attribute names usually do not need quotes.66

• List elements are separated by white space.68

66 Details: Nix manual - attribute set67
67 https://nix.dev/manual/nix/stable/language/syntax#attrs-literal
68 Details: Nix manual - list69
69 https://nix.dev/manual/nix/stable/language/syntax#list-literal

2.2. Nix language basics 17

https://nix.dev/manual/nix/stable/language/syntax#attrs-literal
https://nix.dev/manual/nix/stable/language/syntax#list-literal

nix.dev

Recursive attribute set rec { ... }

You will sometimes see attribute sets declared with rec prepended. This allows access to attributes from within the
set.
Example:

rec {
one = 1;
two = one + 1;
three = two + 1;

}

{ one = 1; three = 3; two = 2; }

Note: Elements in an attribute set can be declared in any order, and are ordered on evaluation.

Counter-example:

{
one = 1;
two = one + 1;
three = two + 1;

}

error: undefined variable 'one'

at «string»:3:9:

2| one = 1;
3| two = one + 1;
| ^

4| three = two + 1;

let ... in ...

Also known as “let expression” or “let binding”
let expressions allow assigning names to values for repeated use.
Example:

let
a = 1;

in
a + a

18 Chapter 2. Tutorials

nix.dev

2

Detailed explanation

Assignments are placed between the keywords let and in. In this example we assign a = 1.
After in comes the expression in which the assignments are valid, i.e., where assigned names can be used. In this
example the expression is a + a, where a refers to a = 1.
By replacing the names with their assigned values, a + a evaluates to 2.
Names can be assigned in any order, and expressions on the right of the assignment (=) can refer to other assigned
names.
Example:

let
b = a + 1;
a = 1;

in
a + b

3

Detailed explanation

Assignments are placed between the keywords let and in. In this example we assign a = 1 and b = a + 1.
The order of assignments does not matter. Therefore the following example, where the assignments are in reverse
order, is equivalent:

let
a = 1;
b = a + 1;

in
a + b

3

Note that the a in b = a + 1 refers to a = 1.
After in comes the expression in which the assignments are valid. In this example the expression is a + b, where
a refers to a = 1, and b refers to b = a + 1.
By replacing the names with their assigned values, a + b evaluates to 3.
This is similar to recursive attribute sets (page 18): in both, the order of assignments does not matter, and names on
the left can be used in expressions on the right of the assignment (=).
Example:
let ... in ...

let
b = a + 1;
c = a + b;
a = 1;

in { c = c; a = a; b = b; }

{ a = 1; b = 2; c = 3; }

2.2. Nix language basics 19

nix.dev

rec { ... }

rec {
b = a + 1;
c = a + b;
a = 1;

}

{ a = 1; b = 2; c = 3; }

The difference is that while a recursive attribute set evaluates to an attribute set (page 17), any expression can follow
after the in keyword.
In the following example we use the let expression to form a list:

let
b = a + 1;
c = a + b;
a = 1;

in [a b c]

[1 2 3]

Only expressions within the let expression itself can access the newly declared names. We say: the bindings have
local scope.
Counter-example:

{
a = let x = 1; in x;
b = x;

}

error: undefined variable 'x'

at «string»:3:7:

2| a = let x = 1; in x;
3| b = x;
| ^

4| }

Attribute access

Attributes in a set are accessed with a dot (.) and the attribute name.
Example:

let
attrset = { x = 1; };

in
attrset.x

1

Accessing nested attributes works the same way.
Example:

20 Chapter 2. Tutorials

nix.dev

let
attrset = { a = { b = { c = 1; }; }; };

in
attrset.a.b.c

1

The dot (.) notation can also be used for assigning attributes.
Example:

{ a.b.c = 1; }

{ a = { b = { c = 1; }; }; }

with ...; ...

The with expression allows access to attributes without repeatedly referencing their attribute set.
Example:

let
a = {
x = 1;
y = 2;
z = 3;

};
in
with a; [x y z]

[1 2 3]

The expression

with a; [x y z]

is equivalent to

[a.x a.y a.z]

Attributes made available through with are only in scope of the expression following the semicolon (;).
Counter-example:

let
a = {
x = 1;
y = 2;
z = 3;

};
in
{

b = with a; [x y z];
c = x;

}

error: undefined variable 'x'

at «string»:10:7:

(continues on next page)

2.2. Nix language basics 21

nix.dev

(continued from previous page)

9| b = with a; [x y z];
10| c = x;
| ^

11| }

inherit ...

inherit is shorthand for assigning the value of a name from an existing scope to the same name in a nested scope.
It is for convenience to avoid repeating the same name multiple times.
Example:

let
x = 1;
y = 2;

in
{

inherit x y;
}

{ x = 1; y = 2; }

The fragment

inherit x y;

is equivalent to

x = x; y = y;

It is also possible to inherit names from a specific attribute set with parentheses (inherit (...) ...).
Example:

let
a = { x = 1; y = 2; };

in
{

inherit (a) x y;
}

{ x = 1; y = 2; }

The fragment

inherit (a) x y;

is equivalent to

x = a.x; y = a.y;

inherit also works inside let expressions.
Example:

let
inherit ({ x = 1; y = 2; }) x y;

in [x y]

22 Chapter 2. Tutorials

nix.dev

[1 2]

Detailed explanation

While this example is contrived, in more complex code you will regularly see nested let expressions that re-use
names from their outer scope.
Here we use the attribute set { x = 1; y = 2; } to have something non-trivial to inherit from. The let
expression inherits x and y from that attribute set using (), which is equivalent to writing:

let
x = { x = 1; y = 2; }.x;
y = { x = 1; y = 2; }.y;

in

The new inner scope now contains x and y, which are used in the list [x y].

String interpolation ${ ... }

Previously known as “antiquotation”.
The value of a Nix expression can be inserted into a character string with the dollar-sign and braces (${ }).
Example:

let
name = "Nix";

in
"hello ${name}"

"hello Nix"

Only character strings or values that can be represented as a character string are allowed.
Counter-example:

let
x = 1;

in
"${x} + ${x} = ${x + x}"

error: cannot coerce an integer to a string

at «string»:4:2:

3| in
4| "${x} + ${x} = ${x + x}"
| ^

5|

Interpolated expressions can be arbitrarily nested.
(This can become hard to read, and we recommend to avoid it in practice.)
Example:

let
a = "no";

in
"${a + " ${a + " ${a}"}"}"

2.2. Nix language basics 23

nix.dev

"no no no"

Detailed explanation

Any Nix expression where the value can be represented as a string can be used within ${ }.
The + sign in the above expression is the string concatenation operator36, which takes two strings and produces a new
string.
The expression in the example is deliberately confusing in order to demonstrate that arbitrarily nested string interpo-
lations are possible, but tend to be hard to read.
It denotes a string that contains the interpolation of concatenating the value of a with a string that starts with a space
and is followed by another interpolated string. That second interpolated string is again the result of concatenating the
value of a and yet another string that starts with a space and is followed by an interpolation of a.
Example:

let
a = "one";
b = "two";

in
"${a + b}"

"onetwo"

Built-in functions are discussed in a later section (page 32).

Warning: You may encounter strings that use the dollar sign ($) before an assigned name, but no braces ({ }):
These are not interpolated strings, but usually denote variables in a shell script.
In such cases, the use of names from the surrounding Nix expression is a coincidence.
Example:
let

out = "Nix";
in
"echo ${out} > $out"

"echo Nix > $out"

Indented strings

Also known as “multi-line strings”.
The Nix language offers convenience syntax for character strings which span multiple lines that have common inden-
tation.
Indented strings are denoted by double single quotes ('' '').
Example:

''
multi
line
string
''

36 https://nix.dev/manual/nix/latest/language/operators#string-concatenation

24 Chapter 2. Tutorials

https://nix.dev/manual/nix/latest/language/operators#string-concatenation

nix.dev

"multi\nline\nstring\n"

Equal amounts of prepended white space are trimmed from the result.
Example:

''
one
two
three

''

"one\n two\n three\n"

Note: Indented strings also support string interpolation (page 23). For details check the documentation on string
literals in the Nix language37.

File system paths

The Nix language offers convenience syntax for file system paths.
Absolute paths always start with a slash (/).
Example:

/absolute/path

/absolute/path

Paths are relative when they contain at least one slash (/) but do not start with one. They evaluate to the path relative
to the file containing the expression.
The following examples assume the containing Nix file is in /current/directory (or nix repl is run in
/current/directory).
Example:

./relative

/current/directory/relative

Example:

relative/path

/current/directory/relative/path

One dot (.) denotes the current directory within the given path.
You will often see the following expression, which specifies a Nix file’s directory.
Example:

./.

/current/directory

37 https://nix.dev/manual/nix/2.24/language/syntax#string-literal

2.2. Nix language basics 25

https://nix.dev/manual/nix/2.24/language/syntax#string-literal
https://nix.dev/manual/nix/2.24/language/syntax#string-literal

nix.dev

Detailed explanation

Since relative pathsmust contain a slash (/) but must not start with one, and the dot (.) denotes no change of directory,
the combination ./. specifies the current directory as a relative path.
Two dots (..) denote the parent directory.
Example:

../.

/current

Note: Paths can be used in interpolated expressions – an impure operation (page 35) we will cover in detail in a later
section (page 35).

Lookup paths

Also known as “angle bracket syntax”.
Example:

<nixpkgs>

/nix/var/nix/profiles/per-user/root/channels/nixpkgs

The value of a lookup path38 is a file system path that depends on the value of builtins.nixPath39.
In practice, <nixpkgs> points to the file system path of some revision of Nixpkgs.
For example, <nixpkgs/lib> points to the subdirectory lib of that file system path:

<nixpkgs/lib>

/nix/var/nix/profiles/per-user/root/channels/nixpkgs/lib

While you will encounter many such examples, we recommend to avoid lookup paths (page 147) in production code,
as they are impurities (page 35) which are not reproducible.

2.2.3 Functions

Functions are everywhere in the Nix language and deserve particular attention.
A function always takes exactly one argument. Argument and function body are separated by a colon (:).
Wherever you find a colon (:) in Nix language code:

• On its left is the function argument
• On its right is the function body.

Function arguments are the third way, apart from attribute sets (page 17) and let expressions (page 18), to assign
names to values. Notably, values are not known in advance: the names are placeholders that are filled when calling a
function (page 28).
Function declarations in the Nix language can appear in different forms. Each of them is explained in the following,
and here is an overview:

38 https://nix.dev/manual/nix/2.22/language/constructs/lookup-path
39 https://nix.dev/manual/nix/2.22/language/builtin-constants#builtins-nixPath

26 Chapter 2. Tutorials

https://nix.dev/manual/nix/2.22/language/constructs/lookup-path
https://nix.dev/manual/nix/2.22/language/builtin-constants#builtins-nixPath

nix.dev

• Single argument

x: x + 1

– Multiple arguments via nesting

x: y: x + y

• Attribute set argument

{ a, b }: a + b

– With default attributes

{ a, b ? 0 }: a + b

– With additional attributes allowed

{ a, b, ...}: a + b

• Named attribute set argument

args@{ a, b, ... }: a + b + args.c

or

{ a, b, ... }@args: a + b + args.c

Functions in the Nix language have no names. We say they are anonymous, and call such a function a lambda.70

Example:

x: x + 1

<LAMBDA>

The <LAMBDA> indicates the resulting value is an anonymous function.
As with any other value, functions can be assigned to a name.
Example:

let
f = x: x + 1;

in f

<LAMBDA>

70 The term lambda is a shorthand for lambda abstractionPage 27, 71 in the lambda calculus72.
71 https://en.wikipedia.org/wiki/Lambda_calculus#lambdaAbstr
72 https://en.wikipedia.org/wiki/Lambda_calculus

2.2. Nix language basics 27

https://en.wikipedia.org/wiki/Lambda_calculus#lambdaAbstr
https://en.wikipedia.org/wiki/Lambda_calculus

nix.dev

Calling functions

Also known as “function application”.
Calling a function with an argument means writing the argument after the function.
Example:

let
f = x: x + 1;

in f 1

2

Example:

let
f = x: x.a;

in
f { a = 1; }

1

The above example calls f on a literal attribute set. One can also pass arguments by name.
Example:

let
f = x: x.a;
v = { a = 1; };

in
f v

1

Since function and argument are separated by white space, sometimes parentheses (()) are required to achieve the
desired result.
Example:

(x: x + 1) 1

2

Detailed explanation

This expression applies an anonymous function x: x + 1 to the argument 1. The function has to be written in
parentheses to distinguish it from the argument.
Example:
List elements are also separated by white space, therefore the following are different:

let
f = x: x + 1;
a = 1;

in [(f a)]

[2]

28 Chapter 2. Tutorials

nix.dev

let
f = x: x + 1;
a = 1;

in [f a]

[<LAMBDA> 1]

The first example reads: apply f to a, and put the result in a list. The resulting list has one element.
The second example reads: put f and a in a list. The resulting list has two elements.

Multiple arguments

Also known as “curried40 functions”.
Nix functions take exactly one argument. Multiple arguments can be handled by nesting functions.
Such a nested function can be used like a function that takes multiple arguments, but offers additional flexibility.
Example:

x: y: x + y

<LAMBDA>

The above function is equivalent to

x: (y: x + y)

<LAMBDA>

This function takes one argument and returns another function y: x + y with x set to the value of that argument.
Example:

let
f = x: y: x + y;

in
f 1

<LAMBDA>

Applying the function which results from f 1 to another argument yields the inner body x + y (with x set to 1 and
y set to the other argument), which can now be fully evaluated.

let
f = x: y: x + y;

in
f 1 2

3

40 https://en.wikipedia.org/wiki/Currying

2.2. Nix language basics 29

https://en.wikipedia.org/wiki/Currying

nix.dev

Attribute set argument

Also known as “keyword arguments” or “destructuring”.
Nix functions can be declared to require an attribute set with specific structure as argument.
This is denoted by listing the expected attribute names separated by commas (,) and enclosed in braces ({ }).
Example:

{a, b}: a + b

<LAMBDA>

The argument defines the exact attributes that have to be in that set. Leaving out or passing additional attributes is an
error.
Example:

let
f = {a, b}: a + b;

in
f { a = 1; b = 2; }

3

Counter-example:

let
f = {a, b}: a + b;

in
f { a = 1; b = 2; c = 3; }

error: 'f' at (string):2:7 called with unexpected argument 'c'

at «string»:4:1:

3| in
4| f { a = 1; b = 2; c = 3; }
| ^

5|

Default values

Also known as “default arguments”.
Destructured arguments can have default values for attributes.
This is denoted by separating the attribute name and its default value with a question mark (?).
Attributes in the argument are not required if they have a default value.
Example:

let
f = {a, b ? 0}: a + b;

in
f { a = 1; }

1

Example:

30 Chapter 2. Tutorials

nix.dev

let
f = {a ? 0, b ? 0}: a + b;

in
f { } # empty attribute set

0

Additional attributes

Additional attributes are allowed with an ellipsis (...):

{a, b, ...}: a + b

Unlike in the previous counter-example, passing an argument that contains additional attributes is not an error.
Example:

let
f = {a, b, ...}: a + b;

in
f { a = 1; b = 2; c = 3; }

3

Named attribute set argument

Also known as “@ pattern”, “@ syntax”, or “‘at’ syntax”.
An attribute set argument can be given a name to be accessible as a whole.
This is denoted by prepending or appending the name to the attribute set argument, separated by the at sign (@).
Example:

{a, b, ...}@args: a + b + args.c

<LAMBDA>

or

args@{a, b, ...}: a + b + args.c

<LAMBDA>

Example:

let
f = {a, b, ...}@args: a + b + args.c;

in
f { a = 1; b = 2; c = 3; }

6

2.2. Nix language basics 31

nix.dev

2.2.4 Function libraries

In addition to the built-in operators41 (+, ==, &&, etc.), there are two widely used libraries that together can be
considered standard for the Nix language. You need to know about both to understand and navigate Nix language
code.
We recommend to at least skim them to familiarise yourself with what is available.

builtins

Also known as “primitive operations” or “primops”.
Nix comes with many functions that are built into the language. They are implemented in C++ as part of the Nix
language interpreter.

Note: The Nix manual lists all Built-in Functions42, and shows how to use them.

These functions are available under the builtins constant.
Example:

builtins.toString

<PRIMOP>

import

Most built-in functions are only accessible through builtins. A notable exception is import, which is also
available at the top level.
import takes a path to a Nix file, reads it to evaluate the contained Nix expression, and returns the resulting value.
If the path points to a directory, the file default.nix in that directory is used instead.
Example:

$ echo 1 + 2 > file.nix

import ./file.nix

3

Detailed explanation

The preceding shell command writes the contents 1 + 2 to the file file.nix in the current directory.
The above Nix expression refers to this file as ./file.nix. import reads the file and evaluates to the contained
Nix expression.
It is an error if the file system path does not exist.
After reading file.nix the Nix expression is equivalent to the file contents:

1 + 2

41 https://nix.dev/manual/nix/stable/language/operators.html
42 https://nix.dev/manual/nix/stable/language/builtins.html

32 Chapter 2. Tutorials

https://nix.dev/manual/nix/stable/language/operators.html
https://nix.dev/manual/nix/stable/language/builtins.html

nix.dev

3

Since a Nix file can contain any Nix expression, imported functions can be applied to arguments immediately.
That is, whenever you find additional tokens after a call to import, the value it returns should be a function, and
anything that follows are arguments to that function.
Example:

$ echo "x: x + 1" > file.nix

import ./file.nix 1

2

Detailed explanation

The preceding shell command writes the contents x: x + 1 to the file file.nix in the current directory.
The above Nix expression refers to this file as ./file.nix. import ./file.nix reads the file and evaluates
to the contained Nix expression.
It is an error if the file system path does not exist.
After reading the file, the Nix expression import ./file.nix is equivalent to the file contents:

(x: x + 1) 1

2

This applies the function x: x + 1 to the argument 1, and therefore evaluates to 2.

Note: Parentheses are required to separate function declaration from function application.

pkgs.lib

The nixpkgs43 repository contains an attribute set called lib44, which provides a large number of useful functions.
They are implemented in the Nix language, as opposed to builtins (page 32), which are part of the language itself.

Note: The Nixpkgs manual lists all Nixpkgs library functions45.

These functions are usually accessed through pkgs.lib, as the Nixpkgs attribute set is given the name pkgs by
convention.
Example:

let
pkgs = import <nixpkgs> {};

in
pkgs.lib.strings.toUpper "lookup paths considered harmful"

LOOKUP PATHS CONSIDERED HARMFUL

43 https://github.com/NixOS/nixpkgs
44 https://github.com/NixOS/nixpkgs/blob/master/lib/default.nix
45 https://nixos.org/manual/nixpkgs/stable/#sec-functions-library

2.2. Nix language basics 33

https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs/blob/master/lib/default.nix
https://nixos.org/manual/nixpkgs/stable/#sec-functions-library

nix.dev

Detailed explanation

This is a more complex example, but by now you should be familiar with all its components.
The name pkgs is declared to be the expression imported from some file. That file’s path is determined by the
value of the lookup path <nixpkgs>, which in turn is determined by the $NIX_PATH environment variable at the
time this expression is evaluated. As this expression happens to be a function, it requires an argument to evaluate,
and in this case passing an empty attribute set {} is sufficient.
Now that pkgs is in scope of let ... in ..., its attributes can be accessed. From the Nixpkgs manual one
can determine that there exists a function under lib.strings.toUpper46.
For brevity, this example uses a lookup path to obtain some version of Nixpkgs. The function toUpper is trivial
enough that we can expect it not to produce different results for different versions of Nixpkgs. Yet, more sophisticated
software is likely to suffer from such problems. A fully reproducible example would therefore look like this:

let
nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/archive/

↪→06278c77b5d162e62df170fec307e83f1812d94b.tar.gz";
pkgs = import nixpkgs {};

in
pkgs.lib.strings.toUpper "always pin your sources"

ALWAYS PIN YOUR SOURCES

See Towards reproducibility: pinning Nixpkgs (page 12) for details.
What you will also often see is that pkgs is passed as an argument to a function. By convention one can assume that
it refers to the Nixpkgs attribute set, which has a lib attribute:

{ pkgs, ... }:
pkgs.lib.strings.removePrefix "no " "no true scotsman"

<LAMBDA>

To make this function produce a result, you can write it to a file (e.g. file.nix) and pass it an argument through
nix-instantiate:

$ nix-instantiate --eval file.nix --arg pkgs 'import <nixpkgs> {}'
"true scotsman"

Oftentimes you will see in NixOS configurations, and also within Nixpkgs, that lib is passed directly. In that case
one can assume that this lib is equivalent to pkgs.lib where only pkgs is available.
Example:

{ lib, ... }:
let

to-be = true;
in
lib.trivial.or to-be (! to-be)

<LAMBDA>

To make this function produce a result, you can write it to a file (e.g. file.nix) and pass it an argument through
nix-instantiate:

$ nix-instantiate --eval file.nix --arg lib '(import <nixpkgs> {}).lib'
true

46 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.strings.toUpper

34 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.strings.toUpper

nix.dev

Sometimes both pkgs and lib are passed as arguments. In that case, one can assume pkgs.lib and lib to be
equivalent. This is done to improve readability by avoiding repeated use of pkgs.lib.
Example:

{ pkgs, lib, ... }:
... multiple uses of `pkgs`
... multiple uses of `lib`

For historical reasons, some of the functions in pkgs.lib are equivalent to builtins (page 32) of the same
name.

2.2.5 Impurities

So far we have only covered what we call pure expressions: declaring data and transforming it with functions.
In practice, describing derivations – the Nix language’s defining feature, which enables functional programming with
the file system – requires observing the outside world. We will discuss derivations (page 37) later in the tutorial.
There is only one impurity in the Nix language that is relevant here: reading files from the file system as build inputs.
Build inputs are files that derivations refer to in order to describe how to derive new files. When run, a derivation will
only have access to explicitly declared build inputs.
The only way to specify build inputs in the Nix language is explicitly with:

• File system paths
• Dedicated functions

Nix and the Nix language refer to files by their content hash. If file contents are not known in advance, it’s unavoidable
to read files during expression evaluation.

Note: Nix supports other types of impure expressions, such as lookup paths (page 147) or the constant builtins.
currentSystem47. We do not cover those here in more detail, as they do not matter for how the Nix language
works in principle, and because they are discouraged for the very reason of breaking reproducibility.

Paths

Whenever a file system path is used in string interpolation (page 23), the contents of that file are copied to a special
location in the file system, the Nix store, as a side effect.
The evaluated string then contains the Nix store path assigned to that file.
Example:

$ echo 123 > data

"${./data}"

"/nix/store/h1qj5h5n05b5dl5q4nldrqq8mdg7dhqk-data"

47 https://nix.dev/manual/nix/stable/language/builtin-constants.html#builtins-currentSystem

2.2. Nix language basics 35

https://nix.dev/manual/nix/stable/language/builtin-constants.html#builtins-currentSystem
https://nix.dev/manual/nix/stable/language/builtin-constants.html#builtins-currentSystem

nix.dev

Detailed explanation

The preceding shell command writes the characters 123 to the file data in the current directory.
The above Nix expression refers to this file as ./data and converts the file system path to an interpolated string
(page 23) ${ ... }.
Such interpolated expressions must evaluate to something that can be represented as a character string. A file system
path is such a value, and its character string representation is the corresponding Nix store path:

/nix/store/<hash>-<name>

The Nix store path is obtained by taking the hash of the file’s contents (<hash>) and combining it with the file name
(<name>). The file is copied into the Nix store directory /nix/store as a side effect of evaluation. It is an error
if the file system path does not exist.
For directories the same thing happens: The entire directory (including nested files and directories) is copied to the
Nix store, and the evaluated string becomes the Nix store path of the directory.

Fetchers

Files to be used as build inputs do not have to come from the file system.
The Nix language provides built-in impure functions to fetch files over the network during evaluation:

• builtins.fetchurl48

• builtins.fetchTarball49

• builtins.fetchGit50

• builtins.fetchClosure51

These functions evaluate to a file system path in the Nix store.
Example:

builtins.fetchurl "https://github.com/NixOS/nix/archive/
↪→7c3ab5751568a0bc63430b33a5169c5e4784a0ff.tar.gz"

"/nix/store/7dhgs330clj36384akg86140fqkgh8zf-
↪→7c3ab5751568a0bc63430b33a5169c5e4784a0ff.tar.gz"

Some of them add extra convenience, such as automatically unpacking archives.
Example:

builtins.fetchTarball "https://github.com/NixOS/nix/archive/
↪→7c3ab5751568a0bc63430b33a5169c5e4784a0ff.tar.gz"

"/nix/store/d59llm96vgis5fy231x6m7nrijs0ww36-source"

Note: The Nixpkgs manual on Fetchers52 lists numerous additional library functions to fetch files over the network.

It is an error if the network request fails.
48 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchurl
49 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchTarball
50 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchGit
51 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchClosure
52 https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers

36 Chapter 2. Tutorials

https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchurl
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchTarball
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchGit
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchClosure
https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers

nix.dev

2.2.6 Derivations

Derivations are at the core of both Nix and the Nix language:
• The Nix language is used to describe derivations.
• Nix runs derivations to produce build results.
• Build results can in turn be used as inputs for other derivations.

The Nix language primitive to declare a derivation is the built-in impure function derivation.
It is usually wrapped by the Nixpkgs build mechanism stdenv.mkDerivation, which hides much of the com-
plexity involved in non-trivial build procedures.

Note: You will probably never encounter derivation in practice.

Whenever you encounter mkDerivation, it denotes something that Nix will eventually build.
Example: a package using mkDerivation (page 39)
The evaluation result of derivation (and mkDerivation) is an attribute set (page 17) with a certain structure
and a special property: It can be used in string interpolation (page 23), and in that case evaluates to the Nix store path
of its build result.
Example:

let
pkgs = import <nixpkgs> {};

in "${pkgs.nix}"

"/nix/store/sv2srrjddrp2isghmrla8s6lazbzmikd-nix-2.11.0"

Note: Your output may differ. It may produce a different hash or even a different package version.
A derivation’s output path is fully determined by its inputs, which in this case come from some version of Nixpkgs.
This is why we recommend to avoid lookup paths (page 147) to ensure predictable outcomes, except in examples
intended for illustration only.

Detailed explanation

The example imports the Nix expression from the lookup path <nixpkgs>, and applies the resulting function to an
empty attribute set {}. Its output is assigned the name pkgs.
Converting the attribute pkgs.nix to a string with string interpolation (page 23) is allowed, as pkgs.nix is a
derivation. That is, ultimately pkgs.nix boils down to a call to derivation.
The resulting string is the file system path where the build result of that derivation will end up.
There is more depth to the inner workings of derivations, but at this point it should be enough to know that such
expressions evaluate to Nix store paths.
String interpolation on derivations is used to refer to their build results as file system paths when declaring new
derivations.
This allows constructing arbitrarily complex compositions of derivations with the Nix language.

2.2. Nix language basics 37

nix.dev

2.2.7 Worked examples

So far we have seen artificial examples illustrating the various constructs in the Nix language.
You should now be able to read Nix language code for simple packages and configurations, and come up with similar
explanations of the following practical examples.

Note: The goal of the following exercises is not to understand what the code means or how it works, but how it is
structured in terms of functions, attribute sets, and other Nix language data types.

Shell environment

{ pkgs ? import <nixpkgs> {} }:
let

message = "hello world";
in
pkgs.mkShellNoCC {

packages = with pkgs; [cowsay];
shellHook = ''
cowsay ${message}

'';
}

This example declares a shell environment (which runs the shellHook on initialization).
Explanation:

• This expression is a function that takes an attribute set as its argument.
• If the argument has the attribute pkgs, it will be used in the function body. Otherwise, by default, import the
Nix expression in the file found on the lookup path <nixpkgs> (which is a function in this case), call the
function with an empty attribute set, and use the resulting value.

• The name message is bound to the string value "hello world".
• The attribute mkShellNoCC of the pkgs set is a function that is passed an attribute set as argument. Its
return value is also the result of the outer function.

• The attribute set passed to mkShellNoCC has the attributes packages (set to a list with one element: the
cowsay attribute from pkgs) and shellHook (set to an indented string).

• The indented string contains an interpolated expression, which will expand the value of message to yield
"hello world".

NixOS configuration

{ config, pkgs, ... }: {

imports = [./hardware-configuration.nix];

environment.systemPackages = with pkgs; [git];

...

}

This example is (part of) a NixOS configuration.
Explanation:

• This expression is a function that takes an attribute set as an argument. It returns an attribute set.

38 Chapter 2. Tutorials

nix.dev

• The argument must at least have the attributes config and pkgs, and may have more attributes.
• The returned attribute set contains the attributes imports and environment.
• imports is a list with one element: a path to a file next to this Nix file, called
hardware-configuration.nix.

Note: imports is not the impure built-in import, but a regular attribute name!

• environment is itself an attribute set with one attribute systemPackages, which will evaluate to a list
with one element: the git attribute from the pkgs set.

• The config argument is not (shown to be) used.

Package

{ lib, stdenv, fetchurl }:

stdenv.mkDerivation rec {

pname = "hello";

version = "2.12";

src = fetchurl {
url = "mirror://gnu/${pname}/${pname}-${version}.tar.gz";
sha256 = "1ayhp9v4m4rdhjmnl2bq3cibrbqqkgjbl3s7yk2nhlh8vj3ay16g";

};

meta = with lib; {
license = licenses.gpl3Plus;

};

}

This example is a (simplified) package declaration from Nixpkgs.
Explanation:

• This expression is a function that takes an attribute set which must have exactly the attributes lib, stdenv,
and fetchurl.

• It returns the result of evaluating the function mkDerivation, which is an attribute of stdenv, applied to
a recursive set.

• The recursive set passed to mkDerivation uses its own pname and version attributes in the argument
to the function fetchurl. fetchurl itself comes from the outer function’s arguments.

• The meta attribute is itself an attribute set, where the license attribute has the value that was assigned to
the nested attribute lib.licenses.gpl3Plus.

2.2. Nix language basics 39

nix.dev

2.2.8 References

• Nix manual: Nix language53

• Nix manual: String interpolation54

• Nix manual: Built-in Functions55

• Nix manual: nix repl56

• Nixpkgs manual: Functions reference57

• Nixpkgs manual: Fetchers58

2.2.9 Next steps

Get things done

• Declarative shell environments with shell.nix (page 9) – create reproducible shell environments from a Nix file
• Packaging existing software with Nix (page 41) – make more software available through Nix

If you want to take a longer break from learning Nix, you can remove unused build results from the Nix store with:

$ nix-collect-garbage

Learn more

If you worked through the examples, you will have noticed that reading the Nix language reveals the structure of the
code, but does not necessarily tell what the code actually means.
Often it is not possible to determine from the code at hand

• the data type of a named value or function argument.
• the data type a called function accepts for its argument.
• which attributes are present in a given attribute set.

Example:

{ x, y, z }: (x y) z.a

How do we know…
• that x will be a function that, given an argument, returns a function?
• that, given x is a function, y will be an appropriate argument to x?
• that, given (x y) is a function, z.a will be an appropriate argument to (x y)?
• that z will be an attribute set at all?
• that, given z is an attribute set, it will have an attribute a?
• which data type y and z.a will be?
• the data type of the end result?

53 https://nix.dev/manual/nix/stable/language/index.html
54 https://nix.dev/manual/nix/stable/language/string-interpolation.html
55 https://nix.dev/manual/nix/stable/language/builtins.html
56 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl.html
57 https://nixos.org/manual/nixpkgs/stable/#sec-functions-library
58 https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers

40 Chapter 2. Tutorials

https://nix.dev/manual/nix/stable/language/index.html
https://nix.dev/manual/nix/stable/language/string-interpolation.html
https://nix.dev/manual/nix/stable/language/builtins.html
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl.html
https://nixos.org/manual/nixpkgs/stable/#sec-functions-library
https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers

nix.dev

And how does the caller of this function know that it requires an attribute set with attributes x, y, z?
Answering such questions requires knowing the context in which a given expression is supposed to be used.
The Nix ecosystem and code style is driven by conventions. Most names you will encounter in Nix language code
come from Nixpkgs:

• Nix Pills59 - a detailed explanation of derivations and how Nixpkgs is constructed from first principles
Nixpkgs provides generic build mechanisms that are widely used:

• stdenv60 - most importantly mkDerivation
• Trivial Builders61 - to create files and shell scripts

Packages from Nixpkgs can be modified through multiple mechanisms:
• overrides62 – specifically override and overrideAttrs to modify single packages
• overlays63 – to produce a custom variant of Nixpkgs with individually modified packages

Different language ecosystems and frameworks have different requirements to accommodating them into Nixpkgs:
• Languages and frameworks64 lists tools provided byNixpkgs to build language- or framework-specific packages
with Nix.

The NixOS Linux distribution has a modular configuration system that imposes its own conventions:
• NixOS modules65 shows how NixOS configurations are organized.

2.3 Packaging existing software with Nix

One of Nix’s primary use-cases is in addressing common difficulties encountered with packaging software, such as
specifying and obtaining dependencies.
In the long term, Nix helps tremendously with alleviating such problems. But when first packaging existing software
with Nix, it’s common to encounter errors that seem inscrutable.

2.3.1 Introduction

In this tutorial, you’ll create your first Nix derivations73 to package C/C++ software, taking advantage of the Nixpkgs
Standard Environment74 (stdenv), which automates much of the work involved.

59 https://nixos.org/guides/nix-pills/
60 https://nixos.org/manual/nixpkgs/stable/#chap-stdenv
61 https://nixos.org/manual/nixpkgs/stable/#chap-trivial-builders
62 https://nixos.org/manual/nixpkgs/stable/#chap-overrides
63 https://nixos.org/manual/nixpkgs/stable/#chap-overlays
64 https://nixos.org/manual/nixpkgs/stable/#chap-language-support
65 https://nixos.org/manual/nixos/stable/index.html#sec-writing-modules
73 https://nix.dev/manual/nix/stable/language/derivations
74 https://nixos.org/manual/nixpkgs/stable/#part-stdenv

2.3. Packaging existing software with Nix 41

https://nixos.org/guides/nix-pills/
https://nixos.org/manual/nixpkgs/stable/#chap-stdenv
https://nixos.org/manual/nixpkgs/stable/#chap-trivial-builders
https://nixos.org/manual/nixpkgs/stable/#chap-overrides
https://nixos.org/manual/nixpkgs/stable/#chap-overlays
https://nixos.org/manual/nixpkgs/stable/#chap-language-support
https://nixos.org/manual/nixos/stable/index.html#sec-writing-modules
https://nix.dev/manual/nix/stable/language/derivations
https://nixos.org/manual/nixpkgs/stable/#part-stdenv
https://nixos.org/manual/nixpkgs/stable/#part-stdenv

nix.dev

What will you learn?

The tutorial begins with hello, an implementation of “hello world” which only requires dependencies already pro-
vided by stdenv. Next, you will build more complex packages with their own dependencies, leading you to use
additional derivation features.
You’ll encounter and address Nix error messages, build failures, and a host of other issues, developing your iterative
debugging techniques along the way.

What do you need?

• Familiarity with the Unix shell and plain text editors
• You should be confident with reading the Nix language (page 13). Feel free to go back and work through the
tutorial first.

How long does it take?

Going through all the steps carefully will take around 60 minutes.

2.3.2 Your first package

Note:
A package is a loosely defined concept that refers to either a collection of files and other data, or a Nix expression
representing such a collection before it comes into being. Packages in Nixpkgs have a conventional structure, allowing
them to be discovered in searches and composed in environments alongside other packages.
For the purposes of this tutorial, a “package” is a Nix language function that will evaluate to a derivation. It will
enable you or others to produce an artifact for practical use, as a consequence of having “packaged existing software
with Nix”.

To start, consider this skeleton derivation:

1 { stdenv }:
2

3 stdenv.mkDerivation { }

This is a function which takes an attribute set containing stdenv, and produces a derivation (which currently does
nothing).

A package function

GNU Hello is an implementation of the “hello world” program, with source code accessible from the GNU Project’s
FTP server75.
To begin, add a pname attribute to the set passed to mkDerivation. Every package needs a name and a version,
and Nix will throw error: derivation name missing without one.

stdenv.mkDerivation {
+ pname = "hello";
+ version = "2.12.1";

75 https://ftp.gnu.org/gnu/hello/

42 Chapter 2. Tutorials

https://ftp.gnu.org/gnu/hello/
https://ftp.gnu.org/gnu/hello/

nix.dev

Next, you will declare a dependency on the latest version of hello, and instruct Nix to use fetchzip to download
the source code archive76.

Note: fetchzip can fetch more archives77 than just zip files!

The hash cannot be known until after the archive has been downloaded and unpacked. Nix will complain if the
hash supplied to fetchzip is incorrect. Set the hash attribute to an empty string and then use the resulting error
message to determine the correct hash:

1 # hello.nix
2 {
3 stdenv,
4 fetchzip,
5 }:
6

7 stdenv.mkDerivation {
8 pname = "hello";
9 version = "2.12.1";
10

11 src = fetchzip {
12 url = "https://ftp.gnu.org/gnu/hello/hello-2.12.1.tar.gz";
13 sha256 = "";
14 };
15 }

Save this file to hello.nix and run nix-build to observe your first build failure:

$ nix-build hello.nix
error: cannot evaluate a function that has an argument without a value ('stdenv')

Nix attempted to evaluate a function as a top level expression; in
this case it must have its arguments supplied either by default
values, or passed explicitly with '--arg' or '--argstr'. See
https://nix.dev/manual/nix/stable/language/constructs.html#functions.

at /home/nix-user/hello.nix:3:3:

2| {
3| stdenv,
| ^

4| fetchzip,

Problem: the expression in hello.nix is a function, which only produces its intended output if it is passed the
correct arguments.

Building with nix-build

stdenv is available from nixpkgs78, which must be imported with another Nix expression in order to pass it as
an argument to this derivation.
The recommended way to do this is to create a default.nix file in the same directory as hello.nix, with the
following contents:

1 # default.nix
2 let
3 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-24.05";
4 pkgs = import nixpkgs { config = {}; overlays = []; };

(continues on next page)
76 https://ftp.gnu.org/gnu/hello/hello-2.12.1.tar.gz
77 https://nixos.org/manual/nixpkgs/stable/#fetchurl
78 https://github.com/NixOS/nixpkgs/

2.3. Packaging existing software with Nix 43

https://ftp.gnu.org/gnu/hello/hello-2.12.1.tar.gz
https://nixos.org/manual/nixpkgs/stable/#fetchurl
https://github.com/NixOS/nixpkgs/

nix.dev

(continued from previous page)
5 in
6 {
7 hello = pkgs.callPackage ./hello.nix { };
8 }

This allows you to run nix-build -A hello to realize the derivation in hello.nix, similar to the current
convention used in Nixpkgs.

Note: callPackage automatically passes attributes from pkgs to the given function, if they match attributes
required by that function’s argument attribute set. In this case, callPackagewill supply stdenv and fetchzip
to the function defined in hello.nix.
The tutorial Package parameters and overrides with callPackage (page 53) goes into detail on how this works.

Now run the nix-build command with the new argument:

$ nix-build -A hello
error: hash mismatch in fixed-output derivation '/nix/store/
↪→pd2kiyfa0c06giparlhd1k31bvllypbb-source.drv':

specified: sha256-AAA=
got: sha256-1kJjhtlsAkpNB7f6tZEs+dbKd8z7KoNHyDHEJ0tmhnc=

error: 1 dependencies of derivation '/nix/store/b4mjwlv73nmiqgkdabsdjc4zq9gnma1l-
↪→hello-2.12.1.drv' failed to build

Finding the file hash

As expected, the incorrect file hash caused an error, and Nix helpfully provided the correct one. In hello.nix,
replace the empty string with the correct hash:

1 # hello.nix
2 {
3 stdenv,
4 fetchzip,
5 }:
6

7 stdenv.mkDerivation {
8 pname = "hello";
9 version = "2.12.1";
10

11 src = fetchzip {
12 url = "https://ftp.gnu.org/gnu/hello/hello-2.12.1.tar.gz";
13 sha256 = "sha256-1kJjhtlsAkpNB7f6tZEs+dbKd8z7KoNHyDHEJ0tmhnc=";
14 };
15 }

Now run the previous command again:

$ nix-build -A hello
this derivation will be built:

/nix/store/rbq37s3r76rr77c7d8x8px7z04kw2mk7-hello.drv
building '/nix/store/rbq37s3r76rr77c7d8x8px7z04kw2mk7-hello.drv'...
...
configuring
...
configure: creating ./config.status
config.status: creating Makefile
...
building
... <many more lines omitted>

44 Chapter 2. Tutorials

nix.dev

Great news: the derivation built successfully!
The console output shows that configure was called, which produced a Makefile that was then used to build
the project. It wasn’t necessary to write any build instructions in this case because the stdenv build system is based
on GNU Autoconf79, which automatically detected the structure of the project directory.

Build result

Check your working directory for the result:

$ ls
default.nix hello.nix result

This result is a symbolic link80 to a Nix store location containing the built binary; you can call ./result/bin/
hello to execute this program:

$./result/bin/hello
Hello, world!

Congratulations, you have successfully packaged your first program with Nix!
Next, you’ll package another piece of software with external-to-stdenv dependencies that present new challenges,
requiring you to make use of more mkDerivation features.

2.3.3 A package with dependencies

Now you will package a somewhat more complicated program, icat81, which allows you to render images in your
terminal.
Change the default.nix from the previous section by adding a new attribute for icat:

1 # default.nix
2 let
3 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-24.05";
4 pkgs = import nixpkgs { config = {}; overlays = []; };
5 in
6 {
7 hello = pkgs.callPackage ./hello.nix { };
8 icat = pkgs.callPackage ./icat.nix { };
9 }

Copy hello.nix to a new file icat.nix, and update the pname and version attributes in that file:

1 # icat.nix
2 {
3 stdenv,
4 fetchzip,
5 }:
6

7 stdenv.mkDerivation {
8 pname = "icat";
9 version = "v0.5";
10

11 src = fetchzip {
12 # ...
13 };
14 }

79 https://www.gnu.org/software/autoconf/
80 https://en.wikipedia.org/wiki/Symbolic_link
81 https://github.com/atextor/icat

2.3. Packaging existing software with Nix 45

https://www.gnu.org/software/autoconf/
https://en.wikipedia.org/wiki/Symbolic_link
https://github.com/atextor/icat

nix.dev

Now to download the source code. icat’s upstream repository is hosted on GitHub82, so you should replace the
previous source fetcher83. This time you will use fetchFromGitHub84 instead of fetchzip, by updating the
argument attribute set to the function accordingly:

1 # icat.nix
2 {
3 stdenv,
4 fetchFromGitHub,
5 }:
6

7 stdenv.mkDerivation {
8 pname = "icat";
9 version = "v0.5";
10

11 src = fetchFromGitHub {
12 # ...
13 };
14 }

Fetching source from GitHub

While fetchzip required url and sha256 arguments, more are needed for fetchFromGitHub85.
The source URL is https://github.com/atextor/icat, which already gives the first two arguments:

• owner: the name of the account controlling the repository

owner = "atextor";

• repo: the name of the repository to fetch

repo = "icat";

Navigate to the project’s Tags page86 to find a suitable Git revision87 (rev), such as the Git commit hash or tag (e.g.
v1.0) corresponding to the release you want to fetch.
In this case, the latest release tag is v0.5.
As in the hello example, a hash must also be supplied. This time, instead of using the empty string and let-
ting nix-build report the correct one in an error, you can fetch the correct hash in the first place with the
nix-prefetch-url command.
You need the SHA256 hash of the contents of the tarball (as opposed to the hash of the tarball file itself). Therefore
pass the --unpack and --type sha256 arguments:

$ nix-prefetch-url --unpack https://github.com/atextor/icat/archive/refs/tags/v0.5.
↪→tar.gz --type sha256
path is '/nix/store/p8jl1jlqxcsc7ryiazbpm7c1mqb6848b-v0.5.tar.gz'
0wyy2ksxp95vnh71ybj1bbmqd5ggp13x3mk37pzr99ljs9awy8ka

Set the correct hash for fetchFromGitHub:

1 # icat.nix
2 {
3 stdenv,
4 fetchFromGitHub,

(continues on next page)
82 https://github.com/atextor/icat
83 https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers
84 https://nixos.org/manual/nixpkgs/stable/#fetchfromgithub
85 https://nixos.org/manual/nixpkgs/stable/#fetchfromgithub
86 https://github.com/atextor/icat/tags
87 https://git-scm.com/docs/revisions

46 Chapter 2. Tutorials

https://github.com/atextor/icat
https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers
https://nixos.org/manual/nixpkgs/stable/#fetchfromgithub
https://nixos.org/manual/nixpkgs/stable/#fetchfromgithub
https://github.com/atextor/icat/tags
https://git-scm.com/docs/revisions

nix.dev

(continued from previous page)
5 }:
6

7 stdenv.mkDerivation {
8 pname = "icat";
9 version = "v0.5";
10

11 src = fetchFromGitHub {
12 owner = "atextor";
13 repo = "icat";
14 rev = "v0.5";
15 sha256 = "0wyy2ksxp95vnh71ybj1bbmqd5ggp13x3mk37pzr99ljs9awy8ka";
16 };
17 }

Missing dependencies

Running nix-build with the new icat attribute, an entirely new issue is reported:

$ nix-build -A icat
these 2 derivations will be built:

/nix/store/86q9x927hsyyzfr4lcqirmsbimysi6mb-source.drv
/nix/store/l5wz9inkvkf0qhl8kpl39vpg2xfm2qpy-icat.drv

...
error: builder for '/nix/store/l5wz9inkvkf0qhl8kpl39vpg2xfm2qpy-icat.drv' failed␣
↪→with exit code 2;

last 10 log lines:
> from /nix/store/hkj250rjsvxcbr31fr1v81cv88cdfp4l-glibc-2.

↪→37-8-dev/include/stdio.h:27,
> from icat.c:31:
> /nix/store/hkj250rjsvxcbr31fr1v81cv88cdfp4l-glibc-2.37-8-dev/include/

↪→features.h:195:3: warning: #warning "_BSD_SOURCE and _SVID_SOURCE are deprecated,
↪→ use _DEFAULT_SOURCE" [8;;https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
↪→#index-Wcpp-Wcpp8;;]

> 195 | # warning "_BSD_SOURCE and _SVID_SOURCE are deprecated, use _
↪→DEFAULT_SOURCE"

> | ^~~~~~~
> icat.c:39:10: fatal error: Imlib2.h: No such file or directory
> 39 | #include <Imlib2.h>
> | ^~~~~~~~~~
> compilation terminated.
> make: *** [Makefile:16: icat.o] Error 1
For full logs, run 'nix log /nix/store/l5wz9inkvkf0qhl8kpl39vpg2xfm2qpy-

↪→icat.drv'.

A compiler error! The icat source was pulled from GitHub, and Nix tried to build what it found, but compilation
failed due to a missing dependency: the imlib2 header.
If you search for imlib2 on search.nixos.org88, you’ll find that imlib2 is already in Nixpkgs.
Add this package to your build environment by adding imlib2 to the arguments of the function in icat.nix.
Then add the argument’s value imlib2 to the list of buildInputs in stdenv.mkDerivation:

1 # icat.nix
2 {
3 stdenv,
4 fetchFromGitHub,
5 imlib2,
6 }:

(continues on next page)
88 https://search.nixos.org/packages?query=imlib2

2.3. Packaging existing software with Nix 47

https://search.nixos.org/packages?query=imlib2

nix.dev

(continued from previous page)
7

8 stdenv.mkDerivation {
9 pname = "icat";
10 version = "v0.5";
11

12 src = fetchFromGitHub {
13 owner = "atextor";
14 repo = "icat";
15 rev = "v0.5";
16 sha256 = "0wyy2ksxp95vnh71ybj1bbmqd5ggp13x3mk37pzr99ljs9awy8ka";
17 };
18

19 buildInputs = [imlib2];
20 }

Run nix-build -A icat again and you’ll encounter another error, but compilation proceeds further this time:

$ nix-build -A icat
this derivation will be built:

/nix/store/bw2d4rp2k1l5rg49hds199ma2mz36x47-icat.drv
...
error: builder for '/nix/store/bw2d4rp2k1l5rg49hds199ma2mz36x47-icat.drv' failed␣
↪→with exit code 2;

last 10 log lines:
> from icat.c:31:
> /nix/store/hkj250rjsvxcbr31fr1v81cv88cdfp4l-glibc-2.37-8-dev/include/

↪→features.h:195:3: warning: #warning "_BSD_SOURCE and _SVID_SOURCE are deprecated,
↪→ use _DEFAULT_SOURCE" [8;;https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
↪→#index-Wcpp-Wcpp8;;]

> 195 | # warning "_BSD_SOURCE and _SVID_SOURCE are deprecated, use _
↪→DEFAULT_SOURCE"

> | ^~~~~~~
> In file included from icat.c:39:
> /nix/store/4fvrh0sjc8sbkbqda7dfsh7q0gxmnh9p-imlib2-1.11.1-dev/include/

↪→Imlib2.h:45:10: fatal error: X11/Xlib.h: No such file or directory
> 45 | #include <X11/Xlib.h>
> | ^~~~~~~~~~~~
> compilation terminated.
> make: *** [Makefile:16: icat.o] Error 1
For full logs, run 'nix log /nix/store/bw2d4rp2k1l5rg49hds199ma2mz36x47-

↪→icat.drv'.

You can see a few warnings which should be corrected in the upstream code. But the important bit for this tutorial is
fatal error: X11/Xlib.h: No such file or directory: another dependency is missing.

2.3.4 Finding packages

Determining fromwhere to source a dependency is currently somewhat involved, because package names don’t always
correspond to library or program names.
You will need the Xlib.h headers from the X11 C package, the Nixpkgs derivation for which is libX11, available
in the xorg package set. There are multiple ways to figure this out:

48 Chapter 2. Tutorials

nix.dev

search.nixos.org

Tip: The easiest way to find what you need is on search.nixos.org/packages89.

Unfortunately in this case, searching for x1190 produces too many irrelevant results because X11 is ubiquitous. On
the left side bar there is a list package sets, and selecting xorg91 shows something promising.
In case all else fails, it helps to become familiar with searching the Nixpkgs source code92 for keywords.

Local code search

To find name assignments in the source, search for "<keyword> =". For example, these are the search results for
"x11 = "93 or "libx11 ="94 on Github.
Or fetch a clone of the Nixpkgs repository95 and search the code locally.
Start a shell that makes the required tools available – git for version control, and rg for code search (provided by
the ripgrep package96):

$ nix-shell -p git ripgrep
[nix-shell:~]$

The Nixpkgs repository is huge. Only clone the latest revision to avoid waiting a long time for a full clone:

[nix-shell:~]$ git clone https://github.com/NixOS/nixpkgs --depth 1
...
[nix-shell:~]$ cd nixpkgs/

To narrow down results, only search the pkgs subdirectory, which holds all the package recipes:

[nix-shell:~]$ rg "x11 =" pkgs
pkgs/tools/X11/primus/default.nix
21: primus = if useNvidia then primusLib_ else primusLib_.override { nvidia_x11 =␣
↪→null; };
22: primus_i686 = if useNvidia then primusLib_i686_ else primusLib_i686_.override
↪→{ nvidia_x11 = null; };

pkgs/applications/graphics/imv/default.nix
38: x11 = [libGLU xorg.libxcb xorg.libX11];

pkgs/tools/X11/primus/lib.nix
14: if nvidia_x11 == null then libGL

pkgs/top-level/linux-kernels.nix
573: ati_drivers_x11 = throw "ati drivers are no longer supported by any kernel␣
↪→>=4.1"; # added 2021-05-18;
... <a lot more results>

Since rg is case sensitive by default, Add -i to make sure you don’t miss anything:
89 http://search.nixos.org/packages
90 https://search.nixos.org/packages?query=x11
91 https://search.nixos.org/packages?buckets=%7B%22package_attr_set%22%3A%5B%22xorg%22%5D%2C%22package_license_set%

22%3A%5B%5D%2C%22package_maintainers_set%22%3A%5B%5D%2C%22package_platforms%22%3A%5B%5D%7D&query=
x11

92 https://github.com/nixos/nixpkgs
93 https://github.com/search?q=repo%3ANixOS%2Fnixpkgs+%22x11+%3D%22&type=code
94 https://github.com/search?q=repo%3ANixOS%2Fnixpkgs+%22libx11+%3D%22&type=code
95 https://github.com/nixos/nixpkgs
96 https://search.nixos.org/packages?show=ripgrep

2.3. Packaging existing software with Nix 49

http://search.nixos.org/packages
https://search.nixos.org/packages?query=x11
https://search.nixos.org/packages?buckets=%7B%22package_attr_set%22%3A%5B%22xorg%22%5D%2C%22package_license_set%22%3A%5B%5D%2C%22package_maintainers_set%22%3A%5B%5D%2C%22package_platforms%22%3A%5B%5D%7D&query=x11
https://github.com/nixos/nixpkgs
https://github.com/search?q=repo%3ANixOS%2Fnixpkgs+%22x11+%3D%22&type=code
https://github.com/search?q=repo%3ANixOS%2Fnixpkgs+%22libx11+%3D%22&type=code
https://github.com/nixos/nixpkgs
https://search.nixos.org/packages?show=ripgrep

nix.dev

[nix-shell:~]$ rg -i "libx11 =" pkgs
pkgs/applications/version-management/monotone-viz/graphviz-2.0.nix
55: ++ lib.optional (libX11 == null) "--without-x";

pkgs/top-level/all-packages.nix
14191: libX11 = xorg.libX11;

pkgs/servers/x11/xorg/default.nix
1119: libX11 = callPackage ({ stdenv, pkg-config, fetchurl, xorgproto,␣
↪→libpthreadstubs, libxcb, xtrans, testers }: stdenv.mkDerivation (finalAttrs: {

pkgs/servers/x11/xorg/overrides.nix
147: libX11 = super.libX11.overrideAttrs (attrs: {

Local derivation search

To search derivations on the command line, use nix-locate from the nix-index97.

Adding package sets as dependencies

Add xorg to your derivation’s input attribute set and use xorg.libX11 in buildInputs:

1 # icat.nix
2 {
3 stdenv,
4 fetchFromGitHub,
5 imlib2,
6 xorg,
7 }:
8

9 stdenv.mkDerivation {
10 pname = "icat";
11 version = "v0.5";
12

13 src = fetchFromGitHub {
14 owner = "atextor";
15 repo = "icat";
16 rev = "v0.5";
17 sha256 = "0wyy2ksxp95vnh71ybj1bbmqd5ggp13x3mk37pzr99ljs9awy8ka";
18 };
19

20 buildInputs = [imlib2 xorg.libX11];
21 }

Note: Because the Nix language is lazily evaluated, accessing only xorg.libX11 means that the remaining
contents of the xorg attribute set are never processed.

97 https://github.com/nix-community/nix-index

50 Chapter 2. Tutorials

https://github.com/nix-community/nix-index

nix.dev

2.3.5 Fixing build failures

Run the last command again:

$ nix-build -A icat
this derivation will be built:

/nix/store/x1d79ld8jxqdla5zw2b47d2sl87mf56k-icat.drv
...
error: builder for '/nix/store/x1d79ld8jxqdla5zw2b47d2sl87mf56k-icat.drv' failed␣
↪→with exit code 2;

last 10 log lines:
> 195 | # warning "_BSD_SOURCE and _SVID_SOURCE are deprecated, use _

↪→DEFAULT_SOURCE"
> | ^~~~~~~
> icat.c: In function 'main':
> icat.c:319:33: warning: ignoring return value of 'write' declared with␣

↪→attribute 'warn_unused_result' [8;;https://gcc.gnu.org/onlinedocs/gcc/Warning-
↪→Options.html#index-Wunused-result-Wunused-result8;;]

> 319 | write(tempfile, &buf, 1);
> | ^~~~~~~~~~~~~~~~~~~~~~~~
> gcc -o icat icat.o -lImlib2
> installing
> install flags: SHELL=/nix/store/8fv91097mbh5049i9rglc73dx6kjg3qk-bash-5.2-

↪→p15/bin/bash install
> make: *** No rule to make target 'install'. Stop.
For full logs, run 'nix log /nix/store/x1d79ld8jxqdla5zw2b47d2sl87mf56k-

↪→icat.drv'.

The missing dependency error is solved, but there is now another problem: make: *** No rule to make
target 'install'. Stop.

installPhase

stdenv is automatically working with the Makefile that comes with icat. The console output shows that
configure and make are executed without issue, so the icat binary is compiling successfully.
The failure occurs when the stdenv attempts to run make install. The Makefile included in the project
happens to lack an install target. The README in the icat repository only mentions using make to build the
tool, leaving the installation step up to users.
To add this step to your derivation, use the installPhase attribute98. It contains a list of command strings that
are executed to perform the installation.
Because make finishes successfully, the icat executable is available in the build directory. You only need to copy
it from there to the output directory.
In Nix, the output directory is stored in the $out variable. That variable is accessible in the derivation’s builder
execution environment99. Create a bin directory within the $out directory and copy the icat binary there:

1 # icat.nix
2 {
3 stdenv,
4 fetchFromGitHub,
5 imlib2,
6 xorg,
7 }:
8

9 stdenv.mkDerivation {
10 pname = "icat";

(continues on next page)
98 https://nixos.org/manual/nixpkgs/stable/#ssec-install-phase
99 https://nix.dev/manual/nix/2.19/language/derivations#builder-execution

2.3. Packaging existing software with Nix 51

https://nixos.org/manual/nixpkgs/stable/#ssec-install-phase
https://nix.dev/manual/nix/2.19/language/derivations#builder-execution
https://nix.dev/manual/nix/2.19/language/derivations#builder-execution

nix.dev

(continued from previous page)
11 version = "v0.5";
12

13 src = fetchFromGitHub {
14 owner = "atextor";
15 repo = "icat";
16 rev = "v0.5";
17 sha256 = "0wyy2ksxp95vnh71ybj1bbmqd5ggp13x3mk37pzr99ljs9awy8ka";
18 };
19

20 buildInputs = [imlib2 xorg.libX11];
21

22 installPhase = ''
23 mkdir -p $out/bin
24 cp icat $out/bin
25 '';
26 }

Phases and hooks

Nixpkgs stdenv.mkDerivation derivations are separated into phases100. Each is intended to control some
aspect of the build process.
Earlier you observed how stdenv.mkDerivation expected the project’s Makefile to have an install
target, and failed when it didn’t. To fix this, you defined a custom installPhase containing instructions for
copying the icat binary to the correct output location, in effect installing it. Up to that point, the stdenv.
mkDerivation automatically determined the buildPhase information for the icat package.
During derivation realisation, there are a number of shell functions (“hooks”, in Nixpkgs) which may execute in each
derivation phase. Hooks do things like set variables, source files, create directories, and so on.
These are specific to each phase, and run both before and after that phase’s execution. They modify the build envi-
ronment for common operations during the build.
It’s good practice when packaging software with Nix to include calls to these hooks in the derivation phases you define,
even when you don’t make direct use of them. This facilitates easy overriding101 of specific parts of the derivation
later. And it keeps the code tidy and makes it easier to read.
Adjust your installPhase to call the appropriate hooks:

1 # icat.nix
2

3 # ...
4

5 installPhase = ''
6 runHook preInstall
7 mkdir -p $out/bin
8 cp icat $out/bin
9 runHook postInstall
10 '';
11

12 # ...

100 https://nixos.org/manual/nixpkgs/stable/#sec-stdenv-phases
101 https://nixos.org/manual/nixpkgs/stable/#chap-overrides

52 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#sec-stdenv-phases
https://nixos.org/manual/nixpkgs/stable/#chap-overrides

nix.dev

2.3.6 A successful build

Running the nix-build command once more will finally do what you want, repeatably. Call ls in the local
directory to find a result symlink to a location in the Nix store:

$ ls
default.nix hello.nix icat.nix result

result/bin/icat is the executable built previously. Success!

2.3.7 References

• Nixpkgs Manual - Standard Environment102

2.3.8 Next steps

• Package parameters and overrides with callPackage (page 53)
• Dependencies in the development shell (page 137)
• Automatic environment activation with direnv (page 136)
• Setting up a Python development environment (page 140)
• Add your own new packages to Nixpkgs103

– How to contribute (page 167)
– How to get help (page 169)

2.4 Package parameters and overrides with callPackage

Nix ships with a special-purpose programming language for creating packages and configurations: the Nix language.
It is used to build the Nix package collection, known as Nixpkgs.
Being purely functional, the Nix language allows declaring custom functions to abstract over common patterns. One
of the most prominent patterns in Nixpkgs is parametrisation of package recipes.

2.4.1 Overview

Nixpkgs is a sizeable software project on its own, with coding conventions and idioms that have emerged over the
years. It has established a convention104 of composing parameterised packages with automatic settings through a
function named callPackage105. This tutorial shows how to use it and why it’s beneficial.
102 https://nixos.org/manual/nixpkgs/unstable/#part-stdenv
103 https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
104 https://github.com/nixos/nixpkgs/commit/d17f0f9cbca38fabb71624f069cd4c0d6feace92
105 https://github.com/NixOS/nixpkgs/commit/fd268b4852d39c18e604c584dd49a611dc795a9b

2.4. Package parameters and overrides with callPackage 53

https://nixos.org/manual/nixpkgs/unstable/#part-stdenv
https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
https://github.com/nixos/nixpkgs/commit/d17f0f9cbca38fabb71624f069cd4c0d6feace92
https://github.com/NixOS/nixpkgs/commit/fd268b4852d39c18e604c584dd49a611dc795a9b

nix.dev

What will you learn?

• Using callPackage to invoke package recipes that follow Nixpkgs conventions
• Overriding package parameters
• Creating interdependent package sets

What do you need?

• Familiarity with the Nix language (page 13)
• First experience with packaging existing software (page 41)

How long does it take?

• 45 minutes

2.4.2 Automatic function calls

Create a new file hello.nix, which could be a typical package recipe as found in Nixpkgs: A function that takes
an attribute set, with attributes corresponding to derivations in the top-level package set, and returns a derivation.

Listing 1: hello.nix
{ writeShellScriptBin }:
writeShellScriptBin "hello" ''

echo "Hello, world!"
''

Detailed explanation

hello.nix declares a function which takes as argument an attribute set with one elementwriteShellScript-
Bin. writeShellScriptBin106 is a function that happens to exist in Nixpkgs, a build helper107 that returns a
derivation. The derivation output in this case contains an executable shell script in $out/bin/hello that prints
“Hello world” when run.
Now create a file default.nix with the following contents:

Listing 2: default.nix
let

pkgs = import <nixpkgs> { };
in
pkgs.callPackage ./hello.nix { }

Realise the derivation in default.nix and run the executable that is produced:

$ nix-build
$./result/bin/hello
Hello, world!

The argument writeShellScriptBin gets filled in automatically when the function in hello.nix is evalu-
ated. For every attribute in the function’s argument, callPackage passes an attribute from the pkgs attribute set
if it exists.
106 https://nixos.org/manual/nixpkgs/unstable/#trivial-builder-writeShellScriptBin
107 https://nixos.org/manual/nixpkgs/unstable/#part-builders

54 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/unstable/#trivial-builder-writeShellScriptBin
https://nixos.org/manual/nixpkgs/unstable/#part-builders

nix.dev

It may appear cumbersome to create the extra file hello.nix for the package in such a simple setup. We have
done so because this is exactly how Nixpkgs is organised: Every package recipe is a file that declares a function. This
function takes as arguments the package’s dependencies.

2.4.3 Parameterised builds

Change the default.nix to produce an attribute set of derivations, with the attribute hello containing the
original derivation:

Listing 3: default.nix
let

pkgs = import <nixpkgs> { };
in
{

hello = pkgs.callPackage ./hello.nix { };
}

When building the attribute hello, by accessing it with the -A / --attr option108, the result will be the same as
before:

$ nix-build -A hello
$./result/bin/hello
Hello, world!

Also change hello.nix to add an additional parameter audience with default value "world":

Listing 4: hello.nix
{

writeShellScriptBin,
audience ? "world",

}:
writeShellScriptBin "hello" ''

echo "Hello, ${audience}!"
''

This also does not change the result.
Things get more interesting when changing default.nix to make use of this new argument. Pass the parameter
audience in the second argument to callPackage:

Listing 5: default.nix
let
pkgs = import <nixpkgs> { };

in
{

- hello = pkgs.callPackage ./hello.nix { };
+ hello = pkgs.callPackage ./hello.nix { audience = "people"; };
}

This attribute is passed on to the argument of the function defined in hello.nix: The same syntax can also be
used to explicitly set the automatically discovered arguments, such as writeShellScriptBin, but that doesn’t
make sense here.
Try it out:

108 https://nix.dev/manual/nix/2.19/command-ref/nix-build#opt-attr

2.4. Package parameters and overrides with callPackage 55

https://nix.dev/manual/nix/2.19/command-ref/nix-build#opt-attr

nix.dev

$ nix-build -A hello
$./result/bin/hello
Hello, people!

This pattern is used widely in Nixpkgs: For example, functions which represent Go programs often have a parameter
buildGoModule. It is common to find expressions like callPackage ./go-program.nix { build-
GoModule = buildGo116Module; } to change the default Go compiler version. Nixpkgs is therefore not
simply a huge library of pre-configured packages, but a collection of functions – package recipes – for customising
packages and even entire ecosystems (for example “All Python packages using my custom interpreter”) on the fly
without duplicating code.

2.5 Overrides

callPackage adds more convenience by allowing parameters to be customised after the fact using the returned
derivation’s override function.
Add a third attribute hello-folks to default.nix and set it to hello.override called with a new value
for audience:

Listing 6: default.nix
let
pkgs = import <nixpkgs> { };

in
-{
+rec {

hello = pkgs.callPackage ./hello.nix { audience = "people"; };
+ hello-folks = hello.override { audience = "folks"; };
}

Note: The resulting attribute set is now recursive (by the keyword rec). That is, attribute values can refer to names
from within the same attribute set.

override passes audience to the original function in hello.nix - it overrides whatever arguments have been
passed in the original callPackage that produced the derivation hello. All the other parameters will remain
the same. This is especially useful and can be often found on packages that provide many options to customise a
package.
Building hello-folks attribute and running the resulting executable will again produce a new version of the
script:

$ nix-build -A hello-folks
$./result/bin/hello
Hello, folks!

A real-world example is the neovim109 package recipe, which has overridable arguments such as extraLua-
Packages, extraPythonPackages, or withRuby. Currently these parameters are only discoverable by
reading the source code, which can be found by following the link to 2/7 Source on search.nixos.org/packages110.
109 https://search.nixos.org/packages?show=neovim
110 https://search.nixos.org/packages

56 Chapter 2. Tutorials

https://search.nixos.org/packages?show=neovim
https://search.nixos.org/packages

nix.dev

2.5.1 Interdependent package sets

You can actually create your own version of callPackage! This comes in handy for package sets where the recipes
depend on each other.

Note: The following examples do not show the “called” files, as they are not necessary for understanding the principle.

Consider the following recursive attribute set of derivations:

Listing 7: default.nix
let

pkgs = import <nixpkgs> { };
in
rec {

a = pkgs.callPackage ./a.nix { };
b = pkgs.callPackage ./b.nix { inherit a; };
c = pkgs.callPackage ./c.nix { inherit b; };
d = pkgs.callPackage ./d.nix { };
e = pkgs.callPackage ./e.nix { inherit c d; };

}

Note: Here, inherit a; is equivalent to a = a;.

Previously declared derivations are passed as arguments to other derivations through callPackage.
In this case you have to remember to manually specify all arguments required by each package in the respective Nix
file that are not in Nixpkgs. If ./b.nix requires an argument a but there is no pkgs.a, the function call will
produce an error. This can become quite tedious quickly, especially for larger package sets.
Use lib.callPackageWith to create your own callPackage based on an attribute set.

Listing 8: default.nix
let

pkgs = import <nixpkgs> { };
callPackage = pkgs.lib.callPackageWith (pkgs // packages);
packages = {
a = callPackage ./a.nix { };
b = callPackage ./b.nix { };
c = callPackage ./c.nix { };
d = callPackage ./d.nix { };
e = callPackage ./e.nix { };

};
in
packages

This requires some explanation.
First of all note that instead of a recursive attribute set, the names we operate on are now assigned in a let binding.
It has the same property as recursive sets: Names on the left can be used in expressions on the right of the equal sign
(=). This is how we can refer to packages when we merge its contents with the pre-existing attribute set pkgs
using the // operator.
Your custom callPackages nowmakes available all the attributes in pkgs and packages to the called package
function (the same names from packages taking precedence), and packages is being built up recursively with
each call.
The last bit may make your head spin. This construction is only possible because the Nix language is lazily evaluated.
That is, values are only computed when they are actually needed. It allows passing packages around without having
fully defined it.

2.5. Overrides 57

nix.dev

Each package’s dependencies are now implicit at this level (they are still explicit in each of the package files), and
callPackage resolves them automagically. This relieves you from dealing with them manually, and precludes
configuration errors that may only surface late into a lengthy build process.
Of course this small example is still manageable in the original form. And the implicitly recursive variant can obscure
the structure for software developers not familiar with lazy evaluation, making it harder to read for them than it was
before. But this benefit really pays off for large constructions, where it is the amount of code that would obscure the
structure, and where manual modifications would become cumbersome and error-prone.

2.5.2 Summary

Using callPackage not only follows Nixpkgs conventions, whichmakes your code easier to follow for experienced
Nix users, but it also gives you some benefits for free:

1. Parametrized builds
2. Overridable builds
3. Concise implementation of interdependent package sets

2.5.3 References

• Nixpkgs manual: callPackageWith111

2.5.4 Next steps

• Working with local files (page 58) - learn to package your own projects with Nix
• Module system deep dive (page 76) - learn to wield the functional programming magic behind NixOS

2.6 Working with local files

To build a local project in a Nix derivation, source files must be accessible to its builder executable112. Since
by default, the builder runs in an isolated environment113 that only allows reading from the Nix store, the Nix
language has built-in features to copy local files to the store and expose the resulting store paths.
Using these features directly can be tricky however:

• Coercion of paths to strings, such as the wide-spread pattern of src = ./., makes the derivation dependent
on the name of the current directory. Furthermore, it always adds the entire directory to the store, including
unneeded files, which causes unnecessary new builds when they change.

• The builtins.path114 function (and equivalently lib.sources.cleanSourceWith115) can ad-
dress these problems. However, it’s often hard to express the desired path selection using the filter function
interface.

In this tutorial you’ll learn how to use the Nixpkgs lib.fileset library116 to work with local files in derivations.
It abstracts over built-in functionality and offers a safer and more convenient interface.
111 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.customisation.callPackageWith
112 https://nix.dev/manual/nix/stable/language/derivations#attr-builder
113 https://nix.dev/manual/nix/stable/command-ref/conf-file.html#conf-sandbox
114 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-path
115 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.sources.cleanSourceWith
116 https://nixos.org/manual/nixpkgs/stable/#sec-functions-library-fileset

58 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.customisation.callPackageWith
https://nix.dev/manual/nix/stable/language/derivations#attr-builder
https://nix.dev/manual/nix/stable/command-ref/conf-file.html#conf-sandbox
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-path
https://nixos.org/manual/nixpkgs/stable/#function-library-lib.sources.cleanSourceWith
https://nixos.org/manual/nixpkgs/stable/#sec-functions-library-fileset

nix.dev

2.6.1 File sets

A file set is a data type representing a collection of local files. File sets can be created, composed, and manipulated
with the various functions of the library.
You can explore and learn about the library with nix repl117:

$ nix repl -f channel:nixos-23.11
...
nix-repl> fs = lib.fileset

The trace118 function pretty-prints the files included in a given file set:

nix-repl> fs.trace ./. null
trace: /home/user (all files in directory)
null

All functions that expect a file set for an argument can also accept a path119. Such path arguments are then implicitly
turned into sets120 that contain all files under the given path. In the previous trace this is indicated by (all files
in directory).

Tip: The trace function pretty-prints its first argument and returns its second argument. But since you often just
need the pretty-printing in nix repl, you can omit the second argument:

nix-repl> fs.trace ./.
trace: /home/user (all files in directory)
«lambda @ /nix/store/1czr278x24s3bl6qdnifpvm5z03wfi2p-nixpkgs-src/lib/fileset/
↪→default.nix:555:8»

Even though file sets conceptually contain local files, these files are never added to the Nix store unless explicitly
requested. Therefore you don’t have to worry as much about accidentally copying secrets into the world-readable
store.
In this example, although we pretty-printed the home directory, no files were copied. This is in contrast to coercion
of paths to strings such as in "${./.}", which copies the whole directory to the Nix store on evaluation!

Warning: When using the flakes and nix-command experimental features121, a local directory within a
Flake is always copied into the Nix store completely unless it is a Git repository!

This implicit coercion also works for files:

$ touch some-file

nix-repl> fs.trace ./some-file
trace: /home/user
trace: - some-file (regular)

In addition to the included file, this also prints its file type122.
117 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl
118 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.trace
119 https://nix.dev/manual/nix/stable/language/values#type-path
120 https://nixos.org/manual/nixpkgs/stable/#sec-fileset-path-coercion
121 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake
122 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-readFileType

2.6. Working with local files 59

https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-repl
https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.trace
https://nix.dev/manual/nix/stable/language/values#type-path
https://nixos.org/manual/nixpkgs/stable/#sec-fileset-path-coercion
https://nixos.org/manual/nixpkgs/stable/#sec-fileset-path-coercion
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-readFileType

nix.dev

2.6.2 Example project

To further experiment with the library, make a sample project. Create a new directory, enter it, and set up npins
to pin the Nixpkgs dependency:

$ mkdir fileset
$ cd fileset
$ nix-shell -p npins --run "npins init --bare; npins add github nixos nixpkgs --
↪→branch nixos-23.11"

Then create a default.nix file with the following contents:

Listing 9: default.nix
{

system ? builtins.currentSystem,
sources ? import ./npins,

}:
let

pkgs = import sources.nixpkgs {
config = { };
overlays = [];
inherit system;

};
in
pkgs.callPackage ./build.nix { }

Add two source files to work with:

$ echo hello > hello.txt
$ echo world > world.txt

2.6.3 Adding files to the Nix store

Files in a given file set can be added to the Nix store with toSource123. The argument to this function requires a
root attribute to determine which source directory to copy to the store. Only the files in the fileset attribute
are included in the result.
Define build.nix as follows:

Listing 10: build.nix
{ stdenv, lib }:
let

fs = lib.fileset;
sourceFiles = ./hello.txt;

in

fs.trace sourceFiles

stdenv.mkDerivation {
name = "fileset";
src = fs.toSource {
root = ./.;
fileset = sourceFiles;

};
postInstall = ''
mkdir $out
cp -v hello.txt $out

(continues on next page)
123 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.toSource

60 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.toSource

nix.dev

(continued from previous page)
'';

}

The call to fs.trace prints the file set that will be used as a derivation input.
Try building it:

Note: It will take a while to fetch Nixpkgs the first time around.

$ nix-build
trace: /home/user/fileset
trace: - hello.txt (regular)
this derivation will be built:

/nix/store/3ci6avmjaijx5g8jhb218i183xi7bi2n-fileset.drv
...
'hello.txt' -> '/nix/store/sa4g6h13v0zbpfw6pzva860kp5aks44n-fileset/hello.txt'
...
/nix/store/sa4g6h13v0zbpfw6pzva860kp5aks44n-fileset

But the real benefit of the file set library comes from its facilities for composing file sets in different ways.

2.6.4 Difference

To be able to copy both files hello.txt and world.txt to the output, add the whole project directory as a
source again:

Listing 11: build.nix
{ stdenv, lib }:
let
fs = lib.fileset;

- sourceFiles = ./hello.txt;
+ sourceFiles = ./.;
in

fs.trace sourceFiles

stdenv.mkDerivation {
name = "fileset";
src = fs.toSource {

root = ./.;
fileset = sourceFiles;

};
postInstall = ''

mkdir $out
- cp -v hello.txt $out
+ cp -v {hello,world}.txt $out

'';
}

This will work as expected:

$ nix-build
trace: /home/user/fileset (all files in directory)
this derivation will be built:

/nix/store/fsihp8872vv9ngbkc7si5jcbigs81727-fileset.drv
...
'hello.txt' -> '/nix/store/wmsxfgbylagmf033nkazr3qfc96y7mwk-fileset/hello.txt'

(continues on next page)

2.6. Working with local files 61

nix.dev

(continued from previous page)
'world.txt' -> '/nix/store/wmsxfgbylagmf033nkazr3qfc96y7mwk-fileset/world.txt'
...
/nix/store/wmsxfgbylagmf033nkazr3qfc96y7mwk-fileset

However, if you run nix-build again, the output path will be different!

$ nix-build
trace: /home/user/fileset (all files in directory)
this derivation will be built:

/nix/store/nlh7ismrf27xsnl3m20vfz6rvwlbbbca-fileset.drv
...
'hello.txt' -> '/nix/store/xknflcvjaa8dj6a6vkg629zmcrgz10rh-fileset/hello.txt'
'world.txt' -> '/nix/store/xknflcvjaa8dj6a6vkg629zmcrgz10rh-fileset/world.txt'
...
/nix/store/xknflcvjaa8dj6a6vkg629zmcrgz10rh-fileset

The problem here is that nix-build by default creates a result symlink in the working directory, which points
to the store path just produced:

$ ls -l result
result -> /nix/store/xknflcvjaa8dj6a6vkg629zmcrgz10rh-fileset

Since src refers to the whole directory, and its contents change when nix-build succeeds, Nix will have to start
over every time.

Note: This will also happen without the file set library, e.g. when setting src = ./.; directly.

The difference124 function subtracts one file set from another. The result is a new file set that contains all files
from the first argument that aren’t in the second argument.
Use it to filter out ./result by changing the sourceFiles definition:

Listing 12: build.nix
{ stdenv, lib }:
let
fs = lib.fileset;

- sourceFiles = ./.;
+ sourceFiles = fs.difference ./. ./result;
in

Building this, the file set library will specify which files are taken from the directory:

$ nix-build
trace: /home/user/fileset
trace: - build.nix (regular)
trace: - default.nix (regular)
trace: - hello.txt (regular)
trace: - npins (all files in directory)
trace: - world.txt (regular)
this derivation will be built:

/nix/store/zr19bv51085zz005yk7pw4s9sglmafvn-fileset.drv
...
'hello.txt' -> '/nix/store/vhyhk6ij39gjapqavz1j1x3zbiy3qc1a-fileset/hello.txt'
'world.txt' -> '/nix/store/vhyhk6ij39gjapqavz1j1x3zbiy3qc1a-fileset/world.txt'
...
/nix/store/vhyhk6ij39gjapqavz1j1x3zbiy3qc1a-fileset

An attempt to repeat the build will re-use the existing store path:
124 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.difference

62 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.difference

nix.dev

$ nix-build
trace: /home/user/fileset
trace: - build.nix (regular)
trace: - default.nix (regular)
trace: - hello.txt (regular)
trace: - npins (all files in directory)
trace: - world.txt (regular)
/nix/store/vhyhk6ij39gjapqavz1j1x3zbiy3qc1a-fileset

2.6.5 Missing files

Removing the ./result symlink creates a new problem, though:

$ rm result
$ nix-build
error: lib.fileset.difference: Second argument (negative set)

(/home/user/fileset/result) is a path that does not exist.
To create a file set from a path that may not exist, use `lib.fileset.

↪→maybeMissing`.

Follow the instructions in the error message, and use maybeMissing125 to create a file set from a path that may
not exist (in which case the file set will be empty):

Listing 13: build.nix
{ stdenv, lib }:
let
fs = lib.fileset;

- sourceFiles = fs.difference ./. ./result;
+ sourceFiles = fs.difference ./. (fs.maybeMissing ./result);
in

This now works, using the whole directory since ./result is not present:

$ nix-build
trace: /home/user/fileset (all files in directory)
this derivation will be built:

/nix/store/zr19bv51085zz005yk7pw4s9sglmafvn-fileset.drv
...
/nix/store/vhyhk6ij39gjapqavz1j1x3zbiy3qc1a-fileset

Another build attempt will produce a different trace, but the same output path:

$ nix-build
trace: /home/user/fileset
trace: - build.nix (regular)
trace: - default.nix (regular)
trace: - hello.txt (regular)
trace: - npins (all files in directory)
trace: - world.txt (regular)
/nix/store/vhyhk6ij39gjapqavz1j1x3zbiy3qc1a-fileset

125 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.maybeMissing

2.6. Working with local files 63

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.maybeMissing

nix.dev

2.6.6 Union (explicitly exclude files)

There is still a problem: Changing any of the included files causes the derivation to be built again, even though it
doesn’t depend on those files.
Append an empty line to build.nix:

$ echo >> build.nix

Again, Nix will start from scratch:

$ nix-build
trace: /home/user/fileset
trace: - default.nix (regular)
trace: - npins (all files in directory)
trace: - build.nix (regular)
trace: - string.txt (regular)
this derivation will be built:

/nix/store/zmgpqlpfz2jq0w9rdacsnpx8ni4n77cn-filesets.drv
...
/nix/store/6pffjljjy3c7kla60nljk3fad4q4kkzn-filesets

One way to fix this is to use unions126.
Create a file set containing a union of the files to exclude (fs.unions [...]), and subtract it (difference)
from the complete directory (./.):

Listing 14: build.nix
sourceFiles =
fs.difference

./.
(fs.unions [

(fs.maybeMissing ./result)
./default.nix
./build.nix
./npins

]);

This will work as expected:

$ nix-build
trace: /home/user/fileset
trace: - hello.txt (regular)
trace: - world.txt (regular)
this derivation will be built:

/nix/store/gr2hw3gdjc28fmv0as1ikpj7lya4r51f-fileset.drv
...
/nix/store/ckn40y7hgqphhbhyrq64h9r6rvdh973r-fileset

Changing any of the excluded files now doesn’t necessarily cause a new build anymore:

$ echo >> build.nix

$ nix-build
trace: /home/user/fileset
trace: - hello.txt (regular)
trace: - world.txt (regular)
/nix/store/ckn40y7hgqphhbhyrq64h9r6rvdh973r-fileset

126 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.unions

64 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.unions

nix.dev

2.6.7 Filter

The fileFilter127 function allows filtering file sets such that each included file satisfies the given criteria.
Use it to select all files with a name ending in .nix:

Listing 15: build.nix
sourceFiles =

fs.difference
./.
(fs.unions [
(fs.maybeMissing ./result)

- ./default.nix
- ./build.nix
+ (fs.fileFilter (file: file.hasExt "nix") ./.)

./npins
]);

This does not change the result, even if we add a new .nix file.

$ nix-build
trace: /home/user/fileset
trace: - hello.txt (regular)
trace: - world.txt (regular)
/nix/store/ckn40y7hgqphhbhyrq64h9r6rvdh973r-fileset

Notably, the approach of using difference ./. explicitly selects the files to exclude, which means that new files
added to the source directory are included by default. Depending on your project, this might be a better fit than the
alternative in the next section.

2.6.8 Union (explicitly include files)

To contrast the previous approach, unions can also be used to select only the files to include. This means that new
files added to the current directory would be ignored by default.
Create some additional files:

$ mkdir src
$ touch build.sh src/select.{c,h}

Then create a file set from only the files to be included explicitly:

Listing 16: build.nix
{ stdenv, lib }:
let

fs = lib.fileset;
sourceFiles = fs.unions [
./hello.txt
./world.txt
./build.sh
(fs.fileFilter

(file: file.hasExt "c" || file.hasExt "h")
./src

)
];

in

(continues on next page)
127 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.fileFilter

2.6. Working with local files 65

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.fileFilter

nix.dev

(continued from previous page)
fs.trace sourceFiles

stdenv.mkDerivation {
name = "fileset";
src = fs.toSource {
root = ./.;
fileset = sourceFiles;

};
postInstall = ''
cp -vr . $out

'';
}

The postInstall script is simplified to rely on the sources to be pre-filtered appropriately:

$ nix-build
trace: /home/user/fileset
trace: - build.sh (regular)
trace: - hello.txt (regular)
trace: - src (all files in directory)
trace: - world.txt (regular)
this derivation will be built:

/nix/store/sjzkn07d6a4qfp60p6dc64pzvmmdafff-fileset.drv
...
'.' -> '/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset'
'./build.sh' -> '/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset/build.sh'
'./hello.txt' -> '/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset/hello.txt'
'./world.txt' -> '/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset/world.txt'
'./src' -> '/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset/src'
'./src/select.c' -> '/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset/src/
↪→select.c'
'./src/select.h' -> '/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset/src/
↪→select.h'
...
/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset

Only the specified files are used, even when a new one is added:

$ touch src/select.o README.md

$ nix-build
trace: - build.sh (regular)
trace: - hello.txt (regular)
trace: - src
trace: - select.c (regular)
trace: - select.h (regular)
trace: - world.txt (regular)
/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset

2.6.9 Matching files tracked by Git

If a directory is part of a Git repository, passing it to gitTracked128 gives you a file set that only includes files
tracked by Git.
Create a local Git repository and add all files except src/select.o and ./result to it:

$ git init
Initialized empty Git repository in /home/user/fileset/.git/

(continues on next page)
128 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.gitTracked

66 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.fileset.gitTracked

nix.dev

(continued from previous page)
$ git add -A
$ git reset src/select.o result

Re-use this selection of files with gitTracked:

Listing 17: build.nix
sourceFiles = fs.gitTracked ./.;

Build it again:

$ nix-build
warning: Git tree '/home/user/fileset' is dirty
trace: /home/vg/src/nix.dev/fileset
trace: - README.md (regular)
trace: - build.nix (regular)
trace: - build.sh (regular)
trace: - default.nix (regular)
trace: - hello.txt (regular)
trace: - npins (all files in directory)
trace: - src
trace: - select.c (regular)
trace: - select.h (regular)
trace: - world.txt (regular)
this derivation will be built:

/nix/store/p9aw3fl5xcjbgg9yagykywvskzgrmk5y-fileset.drv
...
/nix/store/cw4bza1r27iimzrdbfl4yn5xr36d6k5l-fileset

This includes too much though, as not all of these files are needed to build the derivation as originally intended.

Note: When using the flakes and nix-command experimental features129, this function isn’t needed, because
nix build by default only allows access to files tracked by Git. However, in order to provide the same developer
experience for stable Nix, use of this function is nevertheless recommended.

2.6.10 Intersection

This is where intersection comes in. It allows creating a file set that consists only of files that are in both of
two given file sets.
Select all files that are both tracked by Git and relevant for the build:

Listing 18: build.nix
sourceFiles =
fs.intersection

(fs.gitTracked ./.)
(fs.unions [

./hello.txt

./world.txt

./build.sh

./src
]);

This will produce the same output as in the other approach and therefore re-use a previous build result:
129 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake

2.6. Working with local files 67

https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake

nix.dev

$ nix-build
warning: Git tree '/home/user/fileset' is dirty
trace: - build.sh (regular)
trace: - hello.txt (regular)
trace: - src
trace: - select.c (regular)
trace: - select.h (regular)
trace: - world.txt (regular)
/nix/store/zl4n1g6is4cmsqf02dci5b2h5zd0ia4r-fileset

2.6.11 Conclusion

We have shown some examples on how to use all of the fundamental file set functions. For more complex use cases,
they can be composed as needed.
For the complete list and more details, see the lib.fileset reference documentation130.

2.7 Cross compilation

Nixpkgs offers powerful tools to cross-compile software for various system types.

2.7.1 What do you need?

• Experience using C compilers
• Basic knowledge of the Nix language (page 13)

2.7.2 Platforms

When compiling code, we can distinguish between the build platform, where the executable is built, and the host
platform, where the compiled executable runs.139

Native compilation is the special case where those two platforms are the same. Cross compilation is the general
case where those two platforms are not.
Cross compilation is needed when the host platform has limited resources (such as CPU) or when it’s not easily
accessible for development.
The nixpkgs package collection has world-class support for cross compilation, after many years of hard work by
the Nix community.

2.7.3 What’s a target platform?

There is a third concept for a platform we call a target platform.
The target platform is relevant to cases where you want to build a compiler binary. In such cases, you would build a
compiler on the build platform, run it to compile code on the host platform, and run the final executable on the target
platform.
Since this is rarely needed, we will assume that the target is identical to the host.
130 https://nixos.org/manual/nixpkgs/stable/#sec-functions-library-fileset
139 Terminology for cross compilation platforms differs between build systems. We have chosen to follow autoconf terminologyPage 68, 140.
140 https://www.gnu.org/software/autoconf/manual/autoconf-2.69/html_node/Hosts-and-Cross_002dCompilation.html

68 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#sec-functions-library-fileset
https://www.gnu.org/software/autoconf/manual/autoconf-2.69/html_node/Hosts-and-Cross_002dCompilation.html

nix.dev

2.7.4 Determining the host platform config

The build platform is determined automatically by Nix during the configure phase.
The host platform is best determined by running this command on the host platform:

$ $(nix-build '<nixpkgs>' -I nixpkgs=channel:nixos-23.11 -A gnu-config)/config.
↪→guess
aarch64-unknown-linux-gnu

In case this is not possible (for example, when the host platform is not easily accessible for development), the platform
config has to be constructed manually via the following template:

<cpu>-<vendor>-<os>-<abi>

This string representation is used in nixpkgs for historic reasons.
Note that <vendor> is often unknown and <abi> is optional. There’s also no unique identifier for a platform,
for example unknown and pc are interchangeable (which is why the script is called config.guess).
If you can’t install Nix, find a way to run config.guess (usually comes with the autoconf package) from the OS
you’re able to run on the host platform.
Some other common examples of platform configs:

• aarch64-apple-darwin14
• aarch64-pc-linux-gnu
• x86_64-w64-mingw32
• aarch64-apple-ios

Note: macOS/Darwin is a special case, as not the whole OS is open-source. It’s only possible to cross compile
between aarch64-darwin and x86_64-darwin. aarch64-darwin support was recently added, so cross
compilation is barely tested.

2.7.5 Choosing the host platform with Nix

nixpkgs comes with a set of predefined host platforms for cross compilation called pkgsCross.
It is possible to explore them in nix repl:

Note: Starting with Nix 2.19131, nix repl requires the -f / --file flag:

$ nix repl -f '<nixpkgs>' -I nixpkgs=channel:nixos-23.11

$ nix repl '<nixpkgs>' -I nixpkgs=channel:nixos-23.11
Welcome to Nix 2.18.1. Type :? for help.

Loading '<nixpkgs>'...
Added 14200 variables.

nix-repl> pkgsCross.<TAB>
pkgsCross.aarch64-android pkgsCross.musl-power
pkgsCross.aarch64-android-prebuilt pkgsCross.musl32
pkgsCross.aarch64-darwin pkgsCross.musl64
pkgsCross.aarch64-embedded pkgsCross.muslpi

(continues on next page)
131 https://nix.dev/manual/nix/latest/release-notes/rl-2.19

2.7. Cross compilation 69

https://nix.dev/manual/nix/latest/release-notes/rl-2.19

nix.dev

(continued from previous page)
pkgsCross.aarch64-multiplatform pkgsCross.or1k
pkgsCross.aarch64-multiplatform-musl pkgsCross.pogoplug4
pkgsCross.aarch64be-embedded pkgsCross.powernv
pkgsCross.amd64-netbsd pkgsCross.ppc-embedded
pkgsCross.arm-embedded pkgsCross.ppc64
pkgsCross.armhf-embedded pkgsCross.ppc64-musl
pkgsCross.armv7a-android-prebuilt pkgsCross.ppcle-embedded
pkgsCross.armv7l-hf-multiplatform pkgsCross.raspberryPi
pkgsCross.avr pkgsCross.remarkable1
pkgsCross.ben-nanonote pkgsCross.remarkable2
pkgsCross.fuloongminipc pkgsCross.riscv32
pkgsCross.ghcjs pkgsCross.riscv32-embedded
pkgsCross.gnu32 pkgsCross.riscv64
pkgsCross.gnu64 pkgsCross.riscv64-embedded
pkgsCross.i686-embedded pkgsCross.scaleway-c1
pkgsCross.iphone32 pkgsCross.sheevaplug
pkgsCross.iphone32-simulator pkgsCross.vc4
pkgsCross.iphone64 pkgsCross.wasi32
pkgsCross.iphone64-simulator pkgsCross.x86_64-embedded
pkgsCross.mingw32 pkgsCross.x86_64-netbsd
pkgsCross.mingwW64 pkgsCross.x86_64-netbsd-llvm
pkgsCross.mmix pkgsCross.x86_64-unknown-redox
pkgsCross.msp430

These attribute names for cross compilation packages have been chosen somewhat freely over the course of time.
They usually do not match the corresponding platform config string.
You can retrieve the platform string from pkgsCross.<platform>.stdenv.hostPlatform.config:

nix-repl> pkgsCross.aarch64-multiplatform.stdenv.hostPlatform.config
"aarch64-unknown-linux-gnu"

If the host platform you seek hasn’t been defined yet, please contribute it upstream132.

2.7.6 Specifying the host platform

The mechanism for setting up cross compilation works as follows:
1. Take the build platform configuration and apply it to the current package set, called pkgs by convention.

The build platform is implied in pkgs = import <nixpkgs> {} to be the current system. This produces
a build environment pkgs.stdenv with all the dependencies present to compile on the build platform.

2. Apply the appropriate host platform configuration to all the packages in pkgsCross.
Taking pkgs.pkgsCross.<host>.hellowill produce the package hello compiled on the build plat-
form to run on the <host> platform.

There are multiple equivalent ways to access packages targeted to the host platform.
1. Explicitly pick the host platform package from within the build platform environment:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/release-23.

↪→11";
3 pkgs = import nixpkgs {};
4 in
5 pkgs.pkgsCross.aarch64-multiplatform.hello

2. Pass the host platform to crossSystem when importing nixpkgs. This configures nixpkgs such that
all its packages are built for the host platform:

132 https://github.com/NixOS/nixpkgs/blob/master/lib/systems/examples.nix

70 Chapter 2. Tutorials

https://github.com/NixOS/nixpkgs/blob/master/lib/systems/examples.nix

nix.dev

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/release-23.

↪→11";
3 pkgs = import nixpkgs { crossSystem = { config = "aarch64-unknown-linux-gnu";

↪→ }; };
4 in
5 pkgs.hello

Equivalently, you can pass the host platform as an argument to nix-build:

$ nix-build '<nixpkgs>' -I nixpkgs=channel:nixos-23.11 \
--arg crossSystem '{ config = "aarch64-unknown-linux-gnu"; }' \
-A hello

2.7.7 Cross compiling for the first time

To cross compile a package like hello133, pick the platform attribute — aarch64-multiplatform in our case
— and run:

$ nix-build '<nixpkgs>' -I nixpkgs=channel:nixos-23.11 \
-A pkgsCross.aarch64-multiplatform.hello

...
/nix/store/1dx87l5rav8679lqigf9xxkb7wvh2m4k-hello-aarch64-unknown-linux-gnu-2.12.1

Note: The hash of the package in the store path changes with the updates to the channel.

Search for a package134 attribute name to find the one you’re interested in building.

2.7.8 Real-world cross compiling of a Hello World example

To show off the power of cross compilation in Nix, let’s build our own Hello World program by cross compiling
it as static executables to armv6l-unknown-linux-gnueabihf and x86_64-w64-mingw32 (Windows)
platforms and run the resulting executable with an emulator135.
Given we have a cross-compile.nix:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/release-23.11";
3 pkgs = import nixpkgs {};
4

5 # Create a C program that prints Hello World
6 helloWorld = pkgs.writeText "hello.c" ''
7 #include <stdio.h>
8

9 int main (void)
10 {
11 printf ("Hello, world!\n");
12 return 0;
13 }
14 '';
15

16 # A function that takes host platform packages
17 crossCompileFor = hostPkgs:

(continues on next page)
133 https://www.gnu.org/software/hello/
134 https://search.nixos.org/packages
135 https://en.wikipedia.org/wiki/Emulator

2.7. Cross compilation 71

https://www.gnu.org/software/hello/
https://search.nixos.org/packages
https://en.wikipedia.org/wiki/Emulator

nix.dev

(continued from previous page)
18 # Run a simple command with the compiler available
19 hostPkgs.runCommandCC "hello-world-cross-test" {} ''
20 # Wine requires home directory
21 HOME=$PWD
22

23 # Compile our example using the compiler specific to our host platform
24 $CC ${helloWorld} -o hello
25

26 # Run the compiled program using user mode emulation (Qemu/Wine)
27 # buildPackages is passed so that emulation is built for the build platform
28 ${hostPkgs.stdenv.hostPlatform.emulator hostPkgs.buildPackages} hello > $out
29

30 # print to stdout
31 cat $out
32 '';
33 in {
34 # Statically compile our example using the two platform hosts
35 rpi = crossCompileFor pkgs.pkgsCross.raspberryPi;
36 windows = crossCompileFor pkgs.pkgsCross.mingwW64;
37 }

If we build this example and print both resulting derivations, we should see “Hello, world!” for each:

$ cat $(nix-build cross-compile.nix)
Hello, world!
Hello, world!

2.7.9 Developer environment with a cross compiler

In the tutorial for declarative reproducible environments (page 9), we looked at how Nix helps us provide tooling and
system libraries for our project.
It’s also possible to provide an environment with a compiler configured for cross-compilation to static binaries
using musl.
Given we have a shell.nix:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/release-23.11";
3 pkgs = (import nixpkgs {}).pkgsCross.aarch64-multiplatform;
4 in
5

6 # callPackage is needed due to https://github.com/NixOS/nixpkgs/pull/126844
7 pkgs.pkgsStatic.callPackage ({ mkShell, zlib, pkg-config, file }: mkShell {
8 # these tools run on the build platform, but are configured to target the host␣

↪→platform
9 nativeBuildInputs = [pkg-config file];
10 # libraries needed for the host platform
11 buildInputs = [zlib];
12 }) {}

And hello.c:

#include <stdio.h>

int main (void)
{

printf ("Hello, world!\n");
return 0;

}

72 Chapter 2. Tutorials

nix.dev

We can cross compile it:

$ nix-shell --run '$CC hello.c -o hello' shell.nix

And confirm it’s aarch64:

$ nix-shell --run 'file hello' shell.nix
hello: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), statically linked,
↪→ with debug_info, not stripped

2.7.10 Next steps

• The official binary cache136 has a limited number of binaries for packages that are cross compiled, so to save
time recompiling, configure your own binary cache and CI with GitHub Actions (page 144).

• While many compilers in Nixpkgs support cross compilation, not all of them do.
Additionally, supporting cross compilation is not trivial work and due to many possible combinations of what
would need to be tested, some packages might not build.
A detailed explanation of how cross compilation is implemented in Nix137 can help with fixing those issues.

• The Nix community has a dedicated Matrix room138 for help with cross compiling.

2.8 Module system

Much of the power in Nixpkgs and NixOS comes from the module system.
The module system is a Nix language library that enables you to

• Declare one attribute set using many separate Nix expressions.
• Imposes type constraints on values in that attribute set.
• Define values for the same attribute in different Nix expressions andmerge these values automatically according
to their type.

These Nix expressions are called modules and must have a particular structure.
In this tutorial series you’ll learn

• What a module is and how to create one.
• What options are and how to declare them.
• How to express dependencies between modules.

136 https://cache.nixos.org
137 https://nixos.org/manual/nixpkgs/stable/#chap-cross
138 https://matrix.to/#/#cross-compiling:nixos.org

2.8. Module system 73

https://cache.nixos.org
https://nixos.org/manual/nixpkgs/stable/#chap-cross
https://matrix.to/#/

nix.dev

2.8.1 What do you need?

• Familiarity with data types and general programming concepts
• A Nix installation (page 1) to run the examples
• Intermediate proficiency in reading and writing the Nix language (page 13)

2.8.2 How long will it take?

This is a very long tutorial. Prepare for at least 3 hours of work.

A basic module

What is a module?
• A module is a function that takes an attribute set and returns an attribute set.
• It may declare options, telling which attributes are allowed in the final outcome.
• It may define values, for options declared by itself or other modules.
• When evaluated by the module system, it produces an attribute set based on the declarations and definitions.

The simplest possible module is a function that takes any attributes and returns an empty attribute set:

Listing 19: options.nix
{ ... }:
{
}

To define any values, the module system first has to know which ones are allowed. This is done by declaring options
that specify which attributes can be set and used elsewhere.

Declaring options

Options are declared under the top-level options attribute with lib.mkOption141.

Listing 20: options.nix
{ lib, ... }:
{

options = {
name = lib.mkOption { type = lib.types.str; };

};
}

Note: The lib argument is passed automatically by the module system. This makes Nixpkgs library functions142
available in each module’s function body.
The ellipsis ... is necessary because the module system can pass arbitrary arguments to modules.

The attribute type in the argument to lib.mkOption specifies which values are valid for an option. There are
several types available under lib.types143.
Here we have declared an option name of type str: The module system will expect a string when a value is defined.
141 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.options.mkOption
142 https://nixos.org/manual/nixpkgs/stable/#chap-functions
143 https://nixos.org/manual/nixos/stable/#sec-option-types-basic

74 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/stable/#function-library-lib.options.mkOption
https://nixos.org/manual/nixpkgs/stable/#chap-functions
https://nixos.org/manual/nixos/stable/#sec-option-types-basic

nix.dev

Now that we have declared an option, we would naturally want to give it a value.

Defining values

Options are set or defined under the top-level config attribute:

Listing 21: config.nix
{ ... }:
{

config = {
name = "Boaty McBoatface";

};
}

In our option declaration, we created an option name with a string type. Here, in our option definition, we have set
that same option to a string.
Option declarations and option definitions don’t need to be in the same file. Which modules will contribute to the
resulting attribute set is specified when setting up module system evaluation.

Evaluating modules

Modules are evaluated by lib.evalModules144 from the Nixpkgs library. It takes an attribute set as an argument,
where the modules attribute is a list of modules to merge and evaluate.
The output of evalModules contains information about all evaluated modules, and the final values appear in the
attribute config.

Listing 22: default.nix
let

pkgs = import <nixpkgs> {};
result = pkgs.lib.evalModules {
modules = [

./options.nix

./config.nix
];

};
in
result.config

Here’s a helper script to parse and evaluate our default.nix file with nix-instantiate --eval145 and
print the output as JSON:

Listing 23: eval.bash
nix-shell -p jq --run "nix-instantiate --eval --json --strict | jq"

As long as every definition has a corresponding declaration, evaluation will be successful. If there is an option
definition that has not been declared, or the defined value has the wrong type, the module system will throw an error.
Running the script (./eval.bash) should show an output that matches what we have configured:

{
"name": "Boaty McBoatface"

}

144 https://nixos.org/manual/nixpkgs/stable/#module-system-lib-evalModules
145 https://nix.dev/manual/nix/stable/command-ref/nix-instantiate

2.8. Module system 75

https://nixos.org/manual/nixpkgs/stable/#module-system-lib-evalModules
https://nix.dev/manual/nix/stable/command-ref/nix-instantiate

nix.dev

Module system deep dive

Or: Wrapping the world in modules

In this tutorial you will follow an extensive demonstration of how to wrap an existing API with Nix modules.

Overview

This tutorial follows @infinisil146’s presentation on modules147 (source148) for participants of Summer of Nix149
2021.
It may help to play it alongside this tutorial to better keep track of changes to the code you will work on.

What will you learn?

You’ll write modules to interact with the Google Maps API150, declaring module options which represent map ge-
ometry, location pins, and more.
During the tutorial, you will first write some incorrect configurations, creating opportunities to discuss the resulting
error messages and how to resolve them, particularly when discussing type checking.

What do you need?

You will use two helper scripts for this exercise. Download map.sh and geocode.sh to your working directory.

Warning: To run the examples in this tutorial, you will need a Google API key151 in $XDG_DATA_HOME/
google-api/key.

The empty module

Write the following into a file called default.nix:
146 https://github.com/infinisil
147 https://infinisil.com/modules.mp4
148 https://github.com/tweag/summer-of-nix-modules
149 https://github.com/ngi-nix/summer-of-nix
150 https://developers.google.com/maps/documentation/maps-static
151 https://developers.google.com/maps/documentation/maps-static/start#before-you-begin

76 Chapter 2. Tutorials

https://github.com/infinisil
https://infinisil.com/modules.mp4
https://github.com/tweag/summer-of-nix-modules
https://github.com/ngi-nix/summer-of-nix
https://developers.google.com/maps/documentation/maps-static
https://developers.google.com/maps/documentation/maps-static/start#before-you-begin

nix.dev

Listing 24: default.nix
{ ... }:
{

}

Declaring options

We will need some helper functions, which will come from the Nixpkgs library152, which is passed by the module
system as lib:

Listing 25: default.nix
- { ... }:
+ { lib, ... }:
{

}

Using lib.mkOption153, declare the scripts.output option to have the type lines:

Listing 26: default.nix
{ lib, ... }: {

+ options = {
+ scripts.output = lib.mkOption {
+ type = lib.types.lines;
+ };
+ };

}

The lines type means that the only valid values are strings, and that multiple definitions should be joined with
newlines.

Note: The name and attribute path of the option is arbitrary. Here we use scripts, because we will add another
script later, and call this one output, because it will output the resulting map.

152 https://github.com/NixOS/nixpkgs/tree/master/lib
153 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.options.mkOption

2.8. Module system 77

https://github.com/NixOS/nixpkgs/tree/master/lib
https://nixos.org/manual/nixpkgs/stable/#function-library-lib.options.mkOption

nix.dev

Evaluating modules

Write a new file eval.nix to call lib.evalModules154 and evaluate the module in default.nix:

Listing 27: eval.nix
let

nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
pkgs = import nixpkgs { config = {}; overlays = []; };

in
pkgs.lib.evalModules {

modules = [
./default.nix

];
}

Run the following command:

Warning: This will result in an error.

nix-instantiate --eval eval.nix -A config.scripts.output

Detailed explanation

nix-instantiate --eval155 parses and evaluates the Nix file at the specified path, and prints the result.
evalModules produces an attribute set where the final configuration values appear in the config attribute.
Therefore we evaluate the Nix expression in eval.nix at the attribute path156 config.scripts.output.
The error message indicates that the scripts.output option is used but not defined: a value must be set for the
option before accessing it. You will do this in the next steps.

Type checking

As previously mentioned, the lines type only permits string values.

Warning: In this section, you will set an invalid value and encounter a type error.

What happens if you instead try to assign an integer to the option?
Add the following lines to default.nix:

Listing 28: default.nix
{ lib, ... }: {

options = {
scripts.output = lib.mkOption {

type = lib.types.lines;
};

};

+ config = {

(continues on next page)

154 https://nixos.org/manual/nixpkgs/unstable/#module-system-lib-evalModules
155 https://nix.dev/manual/nix/stable/command-ref/nix-instantiate
156 https://nix.dev/manual/nix/stable/language/operators#attribute-selection

78 Chapter 2. Tutorials

https://nixos.org/manual/nixpkgs/unstable/#module-system-lib-evalModules
https://nix.dev/manual/nix/stable/command-ref/nix-instantiate
https://nix.dev/manual/nix/stable/language/operators#attribute-selection

nix.dev

(continued from previous page)
+ scripts.output = 42;
+ };
}

Now try to execute the previous command, and witness your first module error:

$ nix-instantiate --eval eval.nix -A config.scripts.output
error:
...

error: A definition for option `scripts.output' is not of type `strings␣
↪→concatenated with "\n"'. Definition values:

- In `/home/nix-user/default.nix': 42

The definition scripts.output = 42; caused a type error: integers are not strings concatenated with the
newline character.
To make this module pass the type checks and successfully evaluate the scripts.output option, you will now
assign a string to scripts.output.
In this case, you will assign a shell command that runs the map script in the current directory. That in turn calls the
Google Maps Static API to generate a world map. The output is passed on to display it with feh157, a minimalistic
image viewer.
Update default.nix by changing the value of scripts.output to the following string:

Listing 29: default.nix
config = {

- scripts.output = 42;
+ scripts.output = ''
+ ./map.sh size=640x640 scale=2 | feh -
+ '';

};

Interlude: reproducible scripts

That simple command will likely not work as intended on your system, as it may lack the required dependencies (curl
and feh). We can solve this by packaging the raw map script with pkgs.writeShellApplication.
First, make available apkgs argument in yourmodule evaluation by adding amodule that setsconfig._module.
args:

Listing 30: eval.nix
pkgs.lib.evalModules {
modules = [

+ ({ config, ... }: { config._module.args = { inherit pkgs; }; })
./default.nix

];
}

Note: This mechanism is currently only documented in the module system code158, and that documentation is
incomplete and out of date.

Then change default.nix to have the following contents:
157 https://feh.finalrewind.org/
158 https://github.com/NixOS/nixpkgs/blob/master/lib/modules.nix#L140-L182

2.8. Module system 79

https://feh.finalrewind.org/
https://github.com/NixOS/nixpkgs/blob/master/lib/modules.nix#L140-L182

nix.dev

Listing 31: default.nix
{ pkgs, lib, ... }: {

options = {
scripts.output = lib.mkOption {

type = lib.types.package;
};

};

config = {
scripts.output = pkgs.writeShellApplication {

name = "map";
runtimeInputs = with pkgs; [curl feh];
text = ''

${./map.sh} size=640x640 scale=2 | feh -
'';

};
};

}

This will access the previously added pkgs argument so we can use dependencies, and copy the map file in the
current directory into the Nix store so it’s available to the wrapped script, which will also live in the Nix store.
Run the script with:

nix-build eval.nix -A config.scripts.output
./result/bin/map

To iterate more quickly, open a new terminal and set up entr159 to re-run the script whenever any source file in the
current directory changes:

nix-shell -p entr findutils bash --run \
"ls *.nix | \
entr -rs ' \

nix-build eval.nix -A config.scripts.output --no-out-link \
| xargs printf -- \"%s/bin/map\" \
| xargs bash \

' \
"

This command does the following:
• List all .nix files
• Make entr watch them for changes. Terminate the invoked command on each change with -r.
• On each change:

– Run the nix-build invocation as above, but without adding a ./result symlink
– Take the resulting store path and append /bin/map to it
– Run the executable at the path constructed this way

159 https://github.com/eradman/entr

80 Chapter 2. Tutorials

https://github.com/eradman/entr

nix.dev

Declaring more options

Rather than setting all script parameters directly, we will do that through the module system. This will not just add
some safety through type checking, but also allow building abstractions to manage growing complexity and changing
requirements.
Let’s begin by introducing another option, requestParams, which will represent the parameters of the request
made to the Google Maps API.
Its type will be listOf <elementType>, which is a list of elements of one type.
Instead of lines, in this case you will want the type of the list elements to be str, a generic string type.
The difference between str and lines is in their merging behavior: Module option types not only check for valid
values, but also specify how multiple definitions of an option are to be combined into one.

• For lines, multiple definitions get merged by concatenation with newlines.
• For str, multiple definitions are not allowed. This is not a problem here, since one can’t define a list element
multiple times.

Make the following additions to your default.nix file:

Listing 32: default.nix
scripts.output = lib.mkOption {
type = lib.types.package;

};
+
+ requestParams = lib.mkOption {
+ type = lib.types.listOf lib.types.str;
+ };

};

config = {
scripts.output = pkgs.writeShellApplication {

name = "map";
runtimeInputs = with pkgs; [curl feh];
text = ''

${./map.sh} size=640x640 scale=2 | feh -
'';

};
+
+ requestParams = [
+ "size=640x640"
+ "scale=2"
+];

};
}

Dependencies between options

A given module generally declares one option that produces a result to be used elsewhere, in this case scripts.
output.
Options can depend on other options, making it possible to build more useful abstractions.
Here, we want the scripts.output option to use the values of requestParams as arguments to the ./map
script.

2.8. Module system 81

nix.dev

Accessing option values

To make option values available to a module, the arguments of the function declaring the module must include the
config attribute.
Update default.nix to add the config attribute:

Listing 33: default.nix
-{ pkgs, lib, ... }: {
+{ pkgs, lib, config, ... }: {

When a module that sets options is evaluated, the resulting values can be accessed by their corresponding attribute
names under config.

Note: Option values can’t be accessed directly from the same module.
The module system evaluates all modules it receives, and any of them can define a particular option’s value. What
happens when an option is set by multiple modules is determined by that option’s type.

Warning: The config argument is not the same as the config attribute:
• The config argument holds the result of the module system’s lazy evaluation, which takes into account
all modules passed to evalModules and their imports.

• The config attribute of a module exposes that particular module’s option values to the module system for
evaluation.

Now make the following changes to default.nix:

Listing 34: default.nix
config = {

scripts.output = pkgs.writeShellApplication {
name = "map";
runtimeInputs = with pkgs; [curl feh];
text = ''

- ${./map.sh} size=640x640 scale=2 | feh -
+ ${./map.sh} ${lib.concatStringsSep " "
+ config.requestParams} | feh -

'';

Here, the value of the config.requestParams attribute is populated by the module system based on the defi-
nitions in the same file.

Note: Lazy evaluation in the Nix language allows the module system to make a value available in the config
argument passed to the module which defines that value.

lib.concatStringsSep " " is then used to join each list element from the value of config.
requestParams into a single string, with the list elements of requestParams separated by a space character.
The result of this represents the list of command line arguments to pass to the ./map script.

82 Chapter 2. Tutorials

nix.dev

Conditional definitions

Sometimes, you will want option values to be optional. This can be useful when defining a value for an option is not
required, as in the following case.
You will define a new option, map.zoom, to control the zoom level of the map. The Google Maps API will infer a
zoom level if no corresponding argument is passed, a situation you can represent with the nullOr <type>, which
represents values of type <type> or null. This does not automatically mean that when the option isn’t defined, the
value of such an option is null – we still need to define a default value.
Add the map attribute set with the zoom option into the top-level options declaration, like so:

Listing 35: default.nix
requestParams = lib.mkOption {
type = lib.types.listOf lib.types.str;

};
+
+ map = {
+ zoom = lib.mkOption {
+ type = lib.types.nullOr lib.types.int;
+ default = null;
+ };
+ };

};

To make use of this, use the mkIf <condition> <definition> function, which only adds the definition if
the condition evaluates to true. Make the following additions to the requestParams list in the config block:

Listing 36: default.nix
requestParams = [
"size=640x640"
"scale=2"

+ (lib.mkIf (config.map.zoom != null)
+ "zoom=${toString config.map.zoom}")

];
};

This will only add a zoom parameter to the script invocation if the value of config.map.zoom is not null.

Default values

Let’s say that in our application we want to have a different default behavior that sets the zoom level to 10, such that
automatic zooming has to be enabled explicitly.
This can be done with the default argument to mkOption160. Its value will be used if the value of the option
declaring it is not specified otherwise.
Add the corresponding line:

Listing 37: default.nix
map = {
zoom = lib.mkOption {
type = lib.types.nullOr lib.types.int;

+ default = 10;
};

};
};

160 https://github.com/NixOS/nixpkgs/blob/master/lib/options.nix

2.8. Module system 83

https://github.com/NixOS/nixpkgs/blob/master/lib/options.nix

nix.dev

Wrapping shell commands

You have now declared options controlling the map dimensions and zoom level, but have not provided a way to specify
where the map should be centered.
Add the center option now, possibly with your own location as default value:

Listing 38: default.nix
type = lib.types.nullOr lib.types.int;
default = 10;

};
+
+ center = lib.mkOption {
+ type = lib.types.nullOr lib.types.str;
+ default = "switzerland";
+ };

};
};

To implement this behavior, you will use the geocode utility, which turns location names into coordinates. There
are multiple ways of making a new package accessible, but as an exercise, you will add it as an option in the module
system.
First, add a new option to accommodate the package:

Listing 39: default.nix
options = {

scripts.output = lib.mkOption {
type = lib.types.package;

};
+
+ scripts.geocode = lib.mkOption {
+ type = lib.types.package;
+ };

Then define the value for that option where you make the raw script reproducible by wrapping a call to it in
writeShellApplication:

Listing 40: default.nix
config = {

+ scripts.geocode = pkgs.writeShellApplication {
+ name = "geocode";
+ runtimeInputs = with pkgs; [curl jq];
+ text = ''exec ${./geocode.sh} "$@"'';
+ };
+

scripts.output = pkgs.writeShellApplication {
name = "map";
runtimeInputs = with pkgs; [curl feh];

Add another mkIf call to the list of requestParams now where you access the wrapped package through
config.scripts.geocode, and run the executable /bin/geocode inside:

Listing 41: default.nix
"scale=2"
(lib.mkIf (config.map.zoom != null)
"zoom=${toString config.map.zoom}")

+ (lib.mkIf (config.map.center != null)

(continues on next page)

84 Chapter 2. Tutorials

nix.dev

(continued from previous page)
+ "center=\"$(${config.scripts.geocode}/bin/geocode ${
+ lib.escapeShellArg config.map.center
+ })\"")

];
};

This time, you’ve usedescapeShellArg to pass theconfig.map.center value as a command-line argument
to geocode, string interpolating the result back into the requestParams string which sets the center value.
Wrapping shell command execution in Nix modules is a helpful technique for controlling system changes, as it uses
the more ergonomic attributes and values interface rather than dealing with the peculiarities of escaping manually.

Splitting modules

The module schema161 includes the imports attribute, which allows incorporating further modules, for example to
split a large configuration into multiple files.
In particular, this allows you to separate option declarations from where they are used in your configuration.
Create a new module, marker.nix, where you can declare options for defining location pins and other markers on
the map:

Listing 42: marker.nix
{ lib, config, ... }: {

}

Reference this new file in default.nix using the imports attribute:

Listing 43: default.nix
{ pkgs, lib, config, ... }: {

+ imports = [
+ ./marker.nix
+];
+

The submodule type

We want to set multiple markers on the map. A marker is a complex type with multiple fields.
This is where one of themost useful types included in themodule system’s type system comes into play: submodule.
This type allows you to define nested modules with their own options.
Here, you will define a newmap.markers option whose type is a list of submodules, each with a nestedlocation
type, allowing you to define a list of markers on the map.
Each assignment of markers will be type-checked during evaluation of the top-level config.
Make the following changes to marker.nix:

Listing 44: marker.nix
-{ lib, config, ... }: {
+{ lib, config, ... }:
+let

(continues on next page)
161 https://nixos.org/manual/nixos/stable/#sec-writing-modules

2.8. Module system 85

https://nixos.org/manual/nixos/stable/#sec-writing-modules

nix.dev

(continued from previous page)
+ markerType = lib.types.submodule {
+ options = {
+ location = lib.mkOption {
+ type = lib.types.nullOr lib.types.str;
+ default = null;
+ };
+ };
+ };
+in {
+
+ options = {
+ map.markers = lib.mkOption {
+ type = lib.types.listOf markerType;
+ };
+ };

Defining options in other modules

Because of the way the module system composes option definitions, you can freely assign values to options defined
in other modules.
In this case, you will use the map.markers option to produce and add new elements to the requestParams
list, making your declared markers appear on the returned map – but from the module declared in marker.nix.
To implement this behavior, add the following config block to marker.nix:

Listing 45: marker.nix
+ config = {
+
+ map.markers = [
+ { location = "new york"; }
+];
+
+ requestParams = let
+ paramForMarker =
+ builtins.map (marker: "$(${config.scripts.geocode}/bin/geocode ${
+ lib.escapeShellArg marker.location})") config.map.markers;
+ in ["markers=\"${lib.concatStringsSep "|" paramForMarker}\""];
+ };

Warning: To avoid confusion with the map option setting and the final config.map configuration value, here
we use the map function explicitly as builtins.map.

Here, you again used escapeShellArg and string interpolation to generate a Nix string, this time producing a
pipe-separated list of geocoded location attributes.
The requestParams value was also set to the resulting list of strings, which gets appended to the request-
Params list defined in default.nix, thanks to the default merging behavior of the list type.
When defining multiple markers, determining an appropriate center or zoom level for the map may be challenging;
it’s easier to let the API do this for you.
To achieve this, make the following additions to marker.nix, above the requestParams declaration:

86 Chapter 2. Tutorials

nix.dev

Listing 46: marker.nix
+ map.center = lib.mkIf
+ (lib.length config.map.markers >= 1)
+ null;
+
+ map.zoom = lib.mkIf
+ (lib.length config.map.markers >= 2)
+ null;
+

requestParams = let
paramForMarker = marker:
let

In this case, the default behavior of the Google Maps API when not passed a center or zoom level is to pick the
geometric center of all the given markers, and to set a zoom level appropriate for viewing all markers at once.

Nested submodules

Next, we want to allow multiple named users to define a list of markers each.
For that you’ll add a users option with type lib.types.attrsOf <subtype>, which will allow you to
define users as an attribute set, whose values have type <subtype>.
Here, that subtype will be another submodule which allows declaring a departure marker, suitable for querying the
API for the recommended route for a trip.
This will again make use of the markerType submodule, giving a nested structure of submodules.
To propagate marker definitions from users to the map.markers option, make the following changes.
In the let block:

Listing 47: marker.nix
+ userType = lib.types.submodule {
+ options = {
+ departure = lib.mkOption {
+ type = markerType;
+ default = {};
+ };
+ };
+ };
+
in {

This defines a submodule type for a user, with a departure option of type markerType.
In the options block, above map.markers:

Listing 48: marker.nix
+ users = lib.mkOption {
+ type = lib.types.attrsOf userType;
+ };

That allows adding a users attribute set to config in any submodule that imports marker.nix, where each
attribute will be of type userType as declared in the previous step.
In the config block, above map.center:

2.8. Module system 87

nix.dev

Listing 49: marker.nix
config = {

- map.markers = [
- { location = "new york"; }
-];
+ map.markers = lib.filter
+ (marker: marker.location != null)
+ (lib.concatMap (user: [
+ user.departure
+]) (lib.attrValues config.users));

map.center = lib.mkIf
(lib.length config.map.markers >= 1)

This takes all the departuremarkers from all users in the config argument, and adds them to map.markers
if their location attribute is not null.
The config.users attribute set is passed to attrValues, which returns a list of values of each of the attributes
in the set (here, the set of config.users you’ve defined), sorted alphabetically (which is how attribute names are
stored in the Nix language).
Back in default.nix, the resulting map.markers option value is still accessed by requestParams, which
in turn is used to generate arguments to the script that ultimately calls the Google Maps API.
Defining the options in this way allows you to set multiple users.<name>.departure.location values
and generate a map with the appropriate zoom and center, with pins corresponding to the set of departure.
location values for all users.
In the 2021 Summer of Nix, this formed the basis of an interactive multi-person map demo.

The strMatching type

Now that the map can be rendered with multiple markers, it’s time to add some style customizations.
To tell the markers apart, add another option to the markerType submodule, to allow labeling each marker pin.
The API documentation states that these labels must be either an uppercase letter or a number162.
You can implement this with the strMatching "<regex>" type, where <regex> is a regular expression that
will accept any matching values, in this case an uppercase letter or number.
In the let block:

Listing 50: marker.nix
type = lib.types.nullOr lib.types.str;
default = null;

};
+
+ style.label = lib.mkOption {
+ type = lib.types.nullOr
+ (lib.types.strMatching "[A-Z0-9]");
+ default = null;
+ };

};
};

Again, types.nullOr allows for null values, and the default has been set to null.
In the paramForMarker function:
162 https://developers.google.com/maps/documentation/maps-static/start#MarkerStyles

88 Chapter 2. Tutorials

https://developers.google.com/maps/documentation/maps-static/start#MarkerStyles

nix.dev

Listing 51: marker.nix
requestParams = let

- paramForMarker =
- builtins.map (marker: "$(${config.scripts.geocode}/bin/geocode ${
- lib.escapeShellArg marker.location})") config.map.markers;
- in ["markers=\"${lib.concatStringsSep "|" paramForMarker}\""];
+ paramForMarker = marker:
+ let
+ attributes =
+ lib.optional (marker.style.label != null)
+ "label:${marker.style.label}"
+ ++ [
+ "$(${config.scripts.geocode}/bin/geocode ${
+ lib.escapeShellArg marker.location
+ })"
+];
+ in "markers=\"${lib.concatStringsSep "|" attributes}\"";
+ in
+ builtins.map paramForMarker config.map.markers;

Note how we now create a unique marker for each user by concatenating the label and location attributes
together, and assigning them to the requestParams. The label for each marker is only propagated to the CLI
parameters if marker.style.label is set.

Functions as submodule arguments

Right now, if a label is not explicitly set, none will show up. But since every users attribute has a name, we could
use that as an automatic value instead.
This firstUpperAlnum function allows you to retrieve the first character of the username, with the correct type
for passing to departure.style.label:

Listing 52: marker.nix
{ lib, config, ... }:
let

+ # Returns the uppercased first letter
+ # or number of a string
+ firstUpperAlnum = str:
+ lib.mapNullable lib.head
+ (builtins.match "[^A-Z0-9]*([A-Z0-9]).*"
+ (lib.toUpper str));

markerType = lib.types.submodule {
options = {

By transforming the argument to lib.types.submodule into a function, you can access arguments within it.
One special argument automatically available to submodules is name, which when used in attrsOf, gives you the
name of the attribute the submodule is defined under:

Listing 53: marker.nix
- userType = lib.types.submodule {
+ userType = lib.types.submodule ({ name, ... }: {

options = {
departure = lib.mkOption {
type = markerType;
default = {};

(continues on next page)

2.8. Module system 89

nix.dev

(continued from previous page)
};

};
- };

In this case, you don’t easily have access to the name from themarker submoduleslabel option, where you otherwise
could set a default value.
Instead you can use the config section of the user submodule to set a default, like so:

Listing 54: marker.nix
+
+ config = {
+ departure.style.label = lib.mkDefault
+ (firstUpperAlnum name);
+ };
+ });

in {

Note: Module options have a priority, represented as an integer, which determines the precedence for setting the
option to a particular value. When merging values, the priority with lowest numeric value wins.
The lib.mkDefault modifier sets the priority of its argument value to 1000, the lowest precedence.
This ensures that other values set for the same option will prevail.

The either and enum types

For better visual contrast, it would be helpful to have a way to change the color of a marker.
Here you will use two new type-functions for this:

• either <this> <that>, which takes two types as arguments, and allows either of them
• enum [<allowed values>], which takes a list of allowed values, and allows any of them

In the let block, add the following colorType option, which can hold strings containing either some given color
names or an RGB value, add the new compound type:

Listing 55: marker.nix
...
(builtins.match "[^A-Z0-9]*([A-Z0-9]).*"
(lib.toUpper str));

+ # Either a color name or `0xRRGGBB`
+ colorType = lib.types.either
+ (lib.types.strMatching "0x[0-9A-F]{6}")
+ (lib.types.enum [
+ "black" "brown" "green" "purple" "yellow"
+ "blue" "gray" "orange" "red" "white"]);
+

markerType = lib.types.submodule {
options = {
location = lib.mkOption {

This allows either strings that match a 24-bit hexadecimal number or are equal to one of the specified color names.
At the bottom of the let block, add the style.color option and specify a default value:

90 Chapter 2. Tutorials

nix.dev

Listing 56: marker.nix
(lib.types.strMatching "[A-Z0-9]");

default = null;
};

+
+ style.color = lib.mkOption {
+ type = colorType;
+ default = "red";
+ };

};
};

Now add an entry to the paramForMarker list which makes use of the new option:

Listing 57: marker.nix
(marker.style.label != null)
"label:${marker.style.label}"

++ [
+ "color:${marker.style.color}"

"$(${config.scripts.geocode}/bin/geocode ${
lib.escapeShellArg marker.location

})"

In case you set many different markers, it would be helpful to have the ability to change their size individually.
Add a new style.size option to marker.nix, allowing you to choose from the set of pre-defined sizes:

Listing 58: marker.nix
type = colorType;
default = "red";

};
+
+ style.size = lib.mkOption {
+ type = lib.types.enum
+ ["tiny" "small" "medium" "large"];
+ default = "medium";
+ };

};
};

Now add a mapping for the size parameter in paramForMarker, which selects an appropriate string to pass to the
API:

Listing 59: marker.nix
requestParams = let
paramForMarker = marker:
let

+ size = {
+ tiny = "tiny";
+ small = "small";
+ medium = "mid";
+ large = null;
+ }.${marker.style.size};
+

Finally, add another lib.optional call to the attributes string, making use of the selected size:

2.8. Module system 91

nix.dev

Listing 60: marker.nix
attributes =
lib.optional
(marker.style.label != null)
"label:${marker.style.label}"

+ ++ lib.optional
+ (size != null)
+ "size:${size}"

++ [
"color:${marker.style.color}"
"$(${config.scripts.geocode}/bin/geocode ${

The pathType submodule

So far, you’ve created an option for declaring a departuremarker, as well as several options for configuring themarker’s
visual representation.
Now we want to compute and display a route from the user’s location to some destination.
The new option defined in the next section will allow you to set an arrival marker, which together with a departure
allows you to draw paths on the map using the new module defined below.
To start, create a new path.nix file with the following contents:

Listing 61: path.nix
{ lib, config, ... }:
let

pathType = lib.types.submodule {
options = {

locations = lib.mkOption {
type = lib.types.listOf lib.types.str;

};
};

};
in
{

options = {
map.paths = lib.mkOption {

type = lib.types.listOf pathType;
};

};
config = {
requestParams =

let
attrForLocation = loc:
"$(${config.scripts.geocode}/bin/geocode ${lib.escapeShellArg loc})";

paramForPath = path:
let
attributes =
builtins.map attrForLocation path.locations;

in
''path="${lib.concatStringsSep "|" attributes}"'';

in
builtins.map paramForPath config.map.paths;

};
}

The path.nixmodule declares an option for defining a list of paths on our map, where each path is a list of strings
for geographic locations.

92 Chapter 2. Tutorials

nix.dev

In the config attribute we augment the API call by setting the requestParams option value with the coordinates
transformed appropriately, which will be concatenated with request parameters set elsewhere.
Now import this new path.nix module from your marker.nix module:

Listing 62: marker.nix
in {

+ imports = [
+ ./path.nix
+];
+

options = {

users = lib.mkOption {

Copy the departure option declaration to a new arrival option in marker.nix, to complete the initial path
implementation:

Listing 63: marker.nix
type = markerType;
default = {};

};
+
+ arrival = lib.mkOption {
+ type = markerType;
+ default = {};
+ };

};

Next, add an arrival.style.label attribute to the config block, mirroring the departure.style.
label:

Listing 64: marker.nix
config = {
departure.style.label = lib.mkDefault
(firstUpperAlnum name);

+ arrival.style.label = lib.mkDefault
+ (firstUpperAlnum name);

};
});

Finally, update the return list in the function passed toconcatMap inmap.markers to also include thearrival
marker for each user:

Listing 65: marker.nix
map.markers = lib.filter
(marker: marker.location != null)
(lib.concatMap (user: [

- user.departure
+ user.departure user.arrival

]) (lib.attrValues config.users));

map.center = lib.mkIf

Now you have the basis to define paths on the map, connecting pairs of departure and arrival points.
In the path module, define a path connecting every user’s departure and arrival locations:

2.8. Module system 93

nix.dev

Listing 66: path.nix
config = {

+
+ map.paths = builtins.map (user: {
+ locations = [
+ user.departure.location
+ user.arrival.location
+];
+ }) (lib.filter (user:
+ user.departure.location != null
+ && user.arrival.location != null
+) (lib.attrValues config.users));
+

requestParams = let
attrForLocation = loc:
"$(geocode ${lib.escapeShellArg loc})";

The new map.paths attribute contains a list of all valid paths defined for all users.
A path is valid only if the departure and arrival attributes are set for that user.

The between constraint on integer values

Your users have spoken, and they demand the ability to customize the styles of their paths with a weight option.
As before, you’ll now declare a new submodule for the path style.
While you could also directly declare the style.weight option, in this case you should use the submodule to be
able to reuse the path style type later.
Add the pathStyleType submodule option to the let block in path.nix:

Listing 67: path.nix
{ lib, config, ... }:
let

+
+ pathStyleType = lib.types.submodule {
+ options = {
+ weight = lib.mkOption {
+ type = lib.types.ints.between 1 20;
+ default = 5;
+ };
+ };
+ };
+

pathType = lib.types.submodule {

Note: The ints.between <lower> <upper> type allows integers in the given (inclusive) range.

The path weight will default to 5, but can be set to any integer value in the 1 to 20 range, with higher weights producing
thicker paths on the map.
Now add a style option to the options set further down the file:

Listing 68: path.nix
options = {
locations = lib.mkOption {

(continues on next page)

94 Chapter 2. Tutorials

nix.dev

(continued from previous page)
type = lib.types.listOf lib.types.str;

};
+
+ style = lib.mkOption {
+ type = pathStyleType;
+ default = {};
+ };

};

};

Finally, update the attributes list in paramForPath:

Listing 69: path.nix
paramForPath = path:
let

attributes =
- builtins.map attrForLocation path.locations;
+ [
+ "weight:${toString path.style.weight}"
+]
+ ++ builtins.map attrForLocation path.locations;

in "path=\"${lib.concatStringsSep "|" attributes}\"";

The pathStyle submodule

Users still cannot actually customize the path style yet. Introduce a new pathStyle option for each user.
The module system allows you to declare values for an option multiple times, and if the types permit doing so, takes
care of merging each declaration’s values together.
This makes it possible to have a definition for the users option in the marker.nix module, as well as a users
definition in path.nix:

Listing 70: path.nix
in {
options = {

+
+ users = lib.mkOption {
+ type = lib.types.attrsOf (lib.types.submodule {
+ options.pathStyle = lib.mkOption {
+ type = pathStyleType;
+ default = {};
+ };
+ });
+ };
+

map.paths = lib.mkOption {
type = lib.types.listOf pathType;

};

Then add a line using the user.pathStyle option in map.paths where each user’s paths are processed:

Listing 71: path.nix
user.departure.location
user.arrival.location

];

(continues on next page)

2.8. Module system 95

nix.dev

(continued from previous page)
+ style = user.pathStyle;

}) (lib.filter (user:
user.departure.location != null
&& user.arrival.location != null

Path styling: color

As with markers, paths should have customizable colors.
You can accomplish this using types you’ve already encountered by now.
Add a new colorType block to path.nix, specifying the allowed color names and RGB/RGBA hexadecimal
values:

Listing 72: path.nix
{ lib, config, ... }:
let

+ # Either a color name, `0xRRGGBB` or `0xRRGGBBAA`
+ colorType = lib.types.either
+ (lib.types.strMatching "0x[0-9A-F]{6}([0-9A-F]{2})?")
+ (lib.types.enum [
+ "black" "brown" "green" "purple" "yellow"
+ "blue" "gray" "orange" "red" "white"
+]);
+

pathStyleType = lib.types.submodule {

Under the weight option, add a new color option to use the new colorType value:

Listing 73: path.nix
type = lib.types.ints.between 1 20;
default = 5;

};
+
+ color = lib.mkOption {
+ type = colorType;
+ default = "blue";
+ };

};
};

Finally, add a line using the color option to the attributes list:

96 Chapter 2. Tutorials

nix.dev

Listing 74: path.nix
attributes =
[
"weight:${toString path.style.weight}"

+ "color:${path.style.color}"
]
++ map attrForLocation path.locations;

in "path=${

Further styling

Now that you’ve got this far, to further improve the aesthetics of the rendered map, add another style option allowing
paths to be drawn as geodesics, the shortest “as the crow flies” distance between two points on Earth.
Since this feature can be turned on or off, you can do this using the bool type, which can be true or false.
Make the following changes to path.nix now:

Listing 75: path.nix
type = colorType;
default = "blue";

};
+
+ geodesic = lib.mkOption {
+ type = lib.types.bool;
+ default = false;
+ };

};
};

Make sure to also add a line to use that value in attributes list, so the option value is included in the API call:

Listing 76: path.nix
[
"weight:${toString path.style.weight}"
"color:${path.style.color}"

+ "geodesic:${lib.boolToString path.style.geodesic}"
]
++ map attrForLocation path.locations;

in "path=${

Wrapping up

In this tutorial, you’ve learned how to write custom Nix modules to bring external services under declarative control,
with the help of several new utility functions from the Nixpkgs lib.
You defined several modules in multiple files, each with separate submodules making use of the module system’s type
checking.
These modules exposed features of the external API in a declarative way.
You can now conquer the world with Nix.

2.8. Module system 97

nix.dev

2.9 NixOS

Learn how to configure, test, and install or deploy NixOS.

2.9.1 Creating NixOS images

• NixOS virtual machines (page 98)
• Building a bootable ISO image (page 103)
• Building and running Docker images (page 104)

2.9.2 Testing and deploying NixOS configurations

• Integration testing with NixOS virtual machines (page 107)
• Provisioning remote machines via SSH (page 112)
• Installing NixOS on a Raspberry Pi (page 117)
• Deploying NixOS using Terraform (page 121)

2.9.3 Scaling up

• Setting up an HTTP binary cache (page 124)
• Setting up distributed builds (page 128)

NixOS virtual machines

One of the most important features of NixOS is the ability to configure the entire system declaratively, including
packages to be installed, services to be run, as well as other settings and options.
NixOS configurations can be used to test and use NixOS using a virtual machine, independent of an installation on a
“bare metal” computer.

What will you learn?

This tutorial serves as an introduction to creating NixOS virtual machines. Virtual machines are a practical tool for
experimenting with or debugging NixOS configurations.

What do you need?

• A Linux system with virtualisation support
• (optional) A graphical environment for running a graphical virtual machine
• A working Nix installation163

• Basic knowledge of the Nix language (page 13)

Important: A NixOS configuration is a Nix language function following the NixOS module164 convention. For a
thorough treatment of the module system, check the Module system deep dive (page 76) tutorial.

163 https://nix.dev/install-nix
164 https://nixos.org/manual/nixos/stable/index.html#sec-writing-modules

98 Chapter 2. Tutorials

https://nix.dev/install-nix
https://nixos.org/manual/nixos/stable/index.html#sec-writing-modules

nix.dev

Starting from a default NixOS configuration

Note: This tutorial starts with building up your configuration.nix from first principles, explaining each step.
If you prefer, you can skip ahead to the sample configuration (page 99) section.

We start with a minimal configuration.nix:

1 { config, pkgs, ... }:
2

3 {
4 boot.loader.systemd-boot.enable = true;
5 boot.loader.efi.canTouchEfiVariables = true;
6

7 system.stateVersion = "24.05";
8 }

To be able to log in, add the following lines to the returned attribute set:

1 users.users.alice = {
2 isNormalUser = true;
3 extraGroups = ["wheel"];
4 };

Additionally, you need to specify a password for this user. For the purpose of demonstration only, you specify an
insecure, plain text password by adding the initialPassword option to the user configuration:

1 initialPassword = "test";

We add two lightweight programs as an example:

1 environment.systemPackages = with pkgs; [
2 cowsay
3 lolcat
4];

Warning: Do not use plain text passwords outside of this example unless you know what you are doing. See
initialHashedPassword165 or ssh.authorizedKeys166 for more secure alternatives.

Sample configuration

The complete configuration.nix file looks like this:

1 { config, pkgs, ... }:
2 {
3 boot.loader.systemd-boot.enable = true;
4 boot.loader.efi.canTouchEfiVariables = true;
5

6 users.users.alice = {
7 isNormalUser = true;
8 extraGroups = ["wheel"]; # Enable ‘sudo’ for the user.
9 initialPassword = "test";
10 };
11

12 environment.systemPackages = with pkgs; [

(continues on next page)
165 https://nixos.org/manual/nixos/stable/options.html#opt-users.extraUsers._name_.initialHashedPassword
166 https://nixos.org/manual/nixos/stable/options.html#opt-users.extraUsers._name_.openssh.authorizedKeys.keys

2.9. NixOS 99

https://nixos.org/manual/nixos/stable/options.html#opt-users.extraUsers._name_.initialHashedPassword
https://nixos.org/manual/nixos/stable/options.html#opt-users.extraUsers._name_.openssh.authorizedKeys.keys

nix.dev

(continued from previous page)
13 cowsay
14 lolcat
15];
16

17 system.stateVersion = "24.05";
18 }

Creating a QEMU based virtual machine from a NixOS configuration

A NixOS virtual machine is created with the nix-build command:

$ nix-build '<nixpkgs/nixos>' -A vm -I nixpkgs=channel:nixos-24.05 -I nixos-
↪→config=./configuration.nix

This command builds the attribute vm from the nixos-24.05 release of NixOS, using the NixOS configuration
as specified in the relative path.

Detailed explanation

• The positional argument to nix-build167 is a path to the derivation to be built. That path can be obtained
from a Nix expression that evaluates to a derivation (page 37).
The virtual machine build helper is defined in NixOS, which is part of the nixpkgs repository168. Therefore
we use the lookup path (page 26) <nixpkgs/nixos>.

• The -A option169 specifies the attribute to pick from the provided Nix expression <nixpkgs/nixos>.
To build the virtual machine, we choose the vm attribute as defined in nixos/default.nix170.

• The -I option171 prepends entries to the search path.
Here we set nixpkgs to refer to a specific version of Nixpkgs (page 158) and set nix-config to the
configuration.nix file in the current directory.

Running the virtual machine

The previous command created a link with the name result in the working directory. It links to the directory that
contains the virtual machine.

$ ls -R ./result
result:
bin system

result/bin:
run-nixos-vm

Run the virtual machine:

$ QEMU_KERNEL_PARAMS=console=ttyS0 ./result/bin/run-nixos-vm -nographic; reset

This command will run QEMU in the current terminal due to -nographic. console=ttyS0 will also show
the boot process, which ends at the console login screen.
Log in as alice with the password test. Check that the programs are indeed available as specified:
167 https://nix.dev/manual/nix/stable/command-ref/nix-build.html
168 https://github.com/NixOS/nixpkgs
169 https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-attr
170 https://github.com/NixOS/nixpkgs/blob/7c164f4bea71d74d98780ab7be4f9105630a2eba/nixos/default.nix#L19
171 https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I

100 Chapter 2. Tutorials

https://nix.dev/manual/nix/stable/command-ref/nix-build.html
https://github.com/NixOS/nixpkgs
https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-attr
https://github.com/NixOS/nixpkgs/blob/7c164f4bea71d74d98780ab7be4f9105630a2eba/nixos/default.nix#L19
https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I

nix.dev

$ cowsay hello | lolcat

Exit the virtual machine by shutting it down:

$ sudo poweroff

Note: If you forgot to add the user to wheel or didn’t set a password, stop the virtual machine from a different
terminal:

$ sudo pkill qemu

Running the virtual machine will create a nixos.qcow2 file in the current directory. This disk image file contains
the dynamic state of the virtual machine. It can interfere with debugging as it keeps the state of previous runs, for
example the user password.
Delete this file when you change the configuration:

$ rm nixos.qcow2

Running GNOME on a graphical VM

To create a virtual machine with a graphical user interface, add the following lines to the configuration:

1 # Enable the X11 windowing system.
2 services.xserver.enable = true;
3

4 # Enable the GNOME Desktop Environment.
5 services.xserver.displayManager.gdm.enable = true;
6 services.xserver.desktopManager.gnome.enable = true;

These three lines activate X11, the GDM display manager (to be able to login) and Gnome as desktop manager.

Tip: You can also use the installation-cd-graphical-gnome.nix module to generate the configura-
tion file from scratch:

nix-shell -I nixpkgs=channel:nixos-24.05 -p "$(cat <<EOF
let
pkgs = import <nixpkgs> { config = {}; overlays = []; };
iso-config = pkgs.path + /nixos/modules/installer/cd-dvd/installation-cd-

↪→graphical-gnome.nix;
nixos = pkgs.nixos iso-config;

in nixos.config.system.build.nixos-generate-config
EOF
)"

$ nixos-generate-config --dir ./

The complete configuration.nix file looks like this:

1 { config, pkgs, ... }:
2 {
3 boot.loader.systemd-boot.enable = true;
4 boot.loader.efi.canTouchEfiVariables = true;
5

6 services.xserver.enable = true;

(continues on next page)

2.9. NixOS 101

nix.dev

(continued from previous page)
7

8 services.xserver.displayManager.gdm.enable = true;
9 services.xserver.desktopManager.gnome.enable = true;
10

11 users.users.alice = {
12 isNormalUser = true;
13 extraGroups = ["wheel"];
14 initialPassword = "test";
15 };
16

17 system.stateVersion = "24.05";
18 }

To get graphical output, run the virtual machine without special options:

$ nix-build '<nixpkgs/nixos>' -A vm -I nixpkgs=channel:nixos-24.05 -I nixos-
↪→config=./configuration.nix
$./result/bin/run-nixos-vm

Running Sway as Wayland compositor on a VM

To change to a Wayland compositor, disable services.xserver.desktopManager.gnome and enable
programs.sway:

Listing 77: configuration.nix
- services.xserver.desktopManager.gnome.enable = true;
+ programs.sway.enable = true;

Note: Running Wayland compositors in a virtual machine might lead to complications with the display drivers
used by QEMU. You need to choose from the available drivers one that is compatible with Sway. See QEMU User
Documentation172 for options. One possibility is the virtio-vga driver:

$./result/bin/run-nixos-vm -device virtio-vga

Arguments to QEMU can also be added to the configuration file:

1 { config, pkgs, ... }:
2 {
3 boot.loader.systemd-boot.enable = true;
4 boot.loader.efi.canTouchEfiVariables = true;
5

6 services.xserver.enable = true;
7

8 services.xserver.displayManager.gdm.enable = true;
9 programs.sway.enable = true;
10

11 imports = [<nixpkgs/nixos/modules/virtualisation/qemu-vm.nix>];
12 virtualisation.qemu.options = [
13 "-device virtio-vga"
14];
15

16 users.users.alice = {
17 isNormalUser = true;
18 extraGroups = ["wheel"];
19 initialPassword = "test";

(continues on next page)
172 https://www.qemu.org/docs/master/system/qemu-manpage.html

102 Chapter 2. Tutorials

https://www.qemu.org/docs/master/system/qemu-manpage.html
https://www.qemu.org/docs/master/system/qemu-manpage.html

nix.dev

(continued from previous page)
20 };
21

22 system.stateVersion = "24.05";
23 }

The NixOS manual has chapters on X11173 and Wayland174 listing alternative window managers.

References

• NixOS Manual: NixOS Configuration175.
• NixOS Manual: Modules176.
• NixOS Manual Options reference177.
• NixOS Manual: Changing the configuration178.
• NixOS source code: configuration template in tools.nix179.
• NixOS source code: vm attribute in default.nix180.
• Nix manual: nix-build181.
• Nix manual: common command-line options182.
• QEMU User Documentation183 for more runtime options
• NixOS option search: virtualisation.qemu184 for declarative virtual machine configuration

Next steps

• Module system deep dive (page 76)
• Integration testing with NixOS virtual machines (page 107)
• Building a bootable ISO image (page 103)

Building a bootable ISO image

Note: If you need to build images for a different platform, see Cross compiling185.

You may find that an official installation image lacks some hardware support.
The solution is to create myimage.nix to point to the latest kernel using the minimal installation ISO:
173 https://nixos.org/manual/nixos/stable/#sec-x11
174 https://nixos.org/manual/nixos/stable/#sec-wayland
175 https://nixos.org/manual/nixos/stable/index.html#ch-configuration
176 https://nixos.org/manual/nixos/stable/index.html#sec-writing-modules
177 https://nixos.org/manual/nixos/stable/options.html
178 https://nixos.org/manual/nixos/stable/#sec-changing-config
179 https://github.com/NixOS/nixpkgs/blob/4e0525a8cdb370d31c1e1ba2641ad2a91fded57d/nixos/modules/installer/tools/tools.nix#

L122-L226
180 https://github.com/NixOS/nixpkgs/blob/master/nixos/default.nix
181 https://nix.dev/manual/nix/stable/command-ref/nix-build.html
182 https://nix.dev/manual/nix/stable/command-ref/opt-common.html
183 https://www.qemu.org/docs/master/system/qemu-manpage.html
184 https://search.nixos.org/options?query=virtualisation.qemu
185 https://github.com/nix-community/nixos-generators#user-content-cross-compiling

2.9. NixOS 103

https://nixos.org/manual/nixos/stable/#sec-x11
https://nixos.org/manual/nixos/stable/#sec-wayland
https://nixos.org/manual/nixos/stable/index.html#ch-configuration
https://nixos.org/manual/nixos/stable/index.html#sec-writing-modules
https://nixos.org/manual/nixos/stable/options.html
https://nixos.org/manual/nixos/stable/#sec-changing-config
https://github.com/NixOS/nixpkgs/blob/4e0525a8cdb370d31c1e1ba2641ad2a91fded57d/nixos/modules/installer/tools/tools.nix#L122-L226
https://github.com/NixOS/nixpkgs/blob/master/nixos/default.nix
https://nix.dev/manual/nix/stable/command-ref/nix-build.html
https://nix.dev/manual/nix/stable/command-ref/opt-common.html
https://www.qemu.org/docs/master/system/qemu-manpage.html
https://search.nixos.org/options?query=virtualisation.qemu
https://github.com/nix-community/nixos-generators#user-content-cross-compiling

nix.dev

1 { pkgs, modulesPath, lib, ... }: {
2 imports = [
3 "${modulesPath}/installer/cd-dvd/installation-cd-minimal.nix"
4];
5

6 # use the latest Linux kernel
7 boot.kernelPackages = pkgs.linuxPackages_latest;
8

9 # Needed for https://github.com/NixOS/nixpkgs/issues/58959
10 boot.supportedFilesystems = lib.mkForce ["btrfs" "reiserfs" "vfat" "f2fs" "xfs"

↪→"ntfs" "cifs"];
11 }

Generate an ISO with the above configuration:

$ NIX_PATH=nixpkgs=https://github.com/NixOS/nixpkgs/archive/
↪→74e2faf5965a12e8fa5cff799b1b19c6cd26b0e3.tar.gz nix-shell -p nixos-generators --
↪→run "nixos-generate --format iso --configuration ./myimage.nix -o result"

Copy the new image to your USB stick by replacing sdX with the name of your device:

$ dd if=result/iso/*.iso of=/dev/sdX status=progress
$ sync

Next steps

• Take a look at this list of formats that the generators support186 to find your cloud provider or virtualization
technology.

• Take a look at the alternative guide to create a NixOS live CD187

Building and running Docker images

Docker188 is a set of tools and services used to build, manage and deploy containers.
Asmany cloud platforms offer Docker-based container hosting services, creatingDocker containers for a given service
is a common task when building reproducible software. In this tutorial, you will learn how to build Docker containers
using Nix.

Prerequisites

You will need both Nix and Docker189 installed. Docker is available in nixpkgs, which is the preferred way to
install it on NixOS. However, you can also use the native Docker installation of your OS, if you are on another Linux
distribution or macOS.
186 https://github.com/nix-community/nixos-generators#user-content-supported-formats
187 https://wiki.nixos.org/wiki/Creating_a_NixOS_live_CD
188 https://www.docker.com/
189 https://docs.docker.com/get-docker/

104 Chapter 2. Tutorials

https://github.com/nix-community/nixos-generators#user-content-supported-formats
https://wiki.nixos.org/wiki/Creating_a_NixOS_live_CD
https://www.docker.com/
https://docs.docker.com/get-docker/

nix.dev

Build your first container

Nixpkgs190 provides dockerTools to create Docker images:

1 { pkgs ? import <nixpkgs> { }
2 , pkgsLinux ? import <nixpkgs> { system = "x86_64-linux"; }
3 }:
4

5 pkgs.dockerTools.buildImage {
6 name = "hello-docker";
7 config = {
8 Cmd = ["${pkgsLinux.hello}/bin/hello"];
9 };
10 }

Note: If you’re runningmacOS or any platform other than x86_64-linux, you’ll need to either:
• Set up a remote build machine (page 128) to build on Linux
• Cross compile to Linux (page 68) by replacing pkgsLinux.hello with pkgs.pkgsCross.musl64.
hello

We call the dockerTools.buildImage and pass in some parameters:
• a name for our image
• the config including the command Cmd that should be run inside the container once the image is started.
Here we reference the GNU hello package from nixpkgs and run its executable in the container.

Save this in hello-docker.nix and build it:

$ nix-build hello-docker.nix
these derivations will be built:

/nix/store/qpgdp0qpd8ddi1ld72w02zkmm7n87b92-docker-layer-hello-docker.drv
/nix/store/m4xyfyviwbi38sfplq3xx54j6k7mccfb-runtime-deps.drv
/nix/store/v0bvy9qxa79izc7s03fhpq5nqs2h4sr5-docker-image-hello-docker.tar.gz.drv

warning: unknown setting 'experimental-features'
building '/nix/store/qpgdp0qpd8ddi1ld72w02zkmm7n87b92-docker-layer-hello-docker.drv
↪→'...
No contents to add to layer.
Packing layer...
Computing layer checksum...
Finished building layer 'hello-docker'
building '/nix/store/m4xyfyviwbi38sfplq3xx54j6k7mccfb-runtime-deps.drv'...
building '/nix/store/v0bvy9qxa79izc7s03fhpq5nqs2h4sr5-docker-image-hello-docker.
↪→tar.gz.drv'...
Adding layer...
tar: Removing leading `/' from member names
Adding meta...
Cooking the image...
Finished.
/nix/store/y74sb4nrhxr975xs7h83izgm8z75x5fc-docker-image-hello-docker.tar.gz

The image tag (y74sb4nrhxr975xs7h83izgm8z75x5fc) refers to the Nix build hash and makes sure that
the Docker image corresponds to our Nix build. The store path in the last line of the output references the Docker
image.
190 https://github.com/NixOS/nixpkgs

2.9. NixOS 105

https://github.com/NixOS/nixpkgs

nix.dev

Run the container

To work with the container, load this image into Docker’s image registry from the default result symlink created
by nix-build:

$ docker load < result
Loaded image: hello-docker:y74sb4nrhxr975xs7h83izgm8z75x5fc

You can also use the store path to load the image in order to avoid depending on the presence of result:

$ docker load < /nix/store/y74sb4nrhxr975xs7h83izgm8z75x5fc-docker-image-hello-
↪→docker.tar.gz
Loaded image: hello-docker:y74sb4nrhxr975xs7h83izgm8z75x5fc

Evenmore conveniently, you can do everything in one command. The advantage of this approach is thatnix-build
will rebuild the image if there are any changes and pass the new store path to docker load:

$ docker load < $(nix-build hello-docker.nix)
Loaded image: hello-docker:y74sb4nrhxr975xs7h83izgm8z75x5fc

Now that you have loaded the image into Docker, you can run it:

$ docker run -t hello-docker:y74sb4nrhxr975xs7h83izgm8z75x5fc
Hello, world!

Working with Docker images

A general introduction to working with Docker images is not part of this tutorial. The official Docker documenta-
tion191 is a much better place for that.
Note that when you build your Docker images with Nix, you will probably not write a Dockerfile as Nix replaces
the Dockerfile functionality within the Docker ecosystem. Nonetheless, understanding the anatomy of a Dockerfile
may still be useful to understand how Nix replaces each of its functions. Using the Docker CLI, Docker Compose,
Docker Swarm or Docker Hub on the other hand may still be relevant, depending on your use case.

Next steps

• More details on how to use dockerTools can be found in the reference documentation192.
• You might like to browse through more examples of Docker images built with Nix193.
• Take a look at Arion194, a docker-compose wrapper with first-class support for Nix.
• Build docker images on a CI with GitHub Actions (page 144).

191 https://docs.docker.com/
192 https://nixos.org/nixpkgs/manual/#sec-pkgs-dockerTools
193 https://github.com/NixOS/nixpkgs/blob/master/pkgs/build-support/docker/examples.nix
194 https://docs.hercules-ci.com/arion/

106 Chapter 2. Tutorials

https://docs.docker.com/
https://docs.docker.com/
https://nixos.org/nixpkgs/manual/#sec-pkgs-dockerTools
https://github.com/NixOS/nixpkgs/blob/master/pkgs/build-support/docker/examples.nix
https://docs.hercules-ci.com/arion/

nix.dev

Integration testing with NixOS virtual machines

What will you learn?

This tutorial introduces Nixpkgs functionality for testing NixOS configurations. It also shows how to set up distributed
test scenarios that involve multiple machines.

What do you need?

• A working Nix installation (page 1) on Linux, or NixOS195

• Basic knowledge of the Nix language (page 13)
• Basic knowledge of NixOS configuration (page 98)

Introduction

Nixpkgs provides a test environment196 to automate integration testing for distributed systems. It allows defining tests
based on a set of declarative NixOS configurations and using a Python shell to interact with them through QEMU197

as the backend. Those tests are widely used to ensure that NixOS works as intended, so in general they are called
NixOS Tests198. They can be written and launched outside of NixOS, on any Linux machine208.
Integration tests are reproducible due to the design properties of Nix, making them a valuable part of a continuous
integration (CI) pipeline.

The testers.runNixOSTest function

NixOS VM tests are defined using the testers.runNixOSTest function. The pattern for NixOS VM tests
looks like this:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
3 pkgs = import nixpkgs { config = {}; overlays = []; };
4 in
5

6 pkgs.testers.runNixOSTest {
7 name = "test-name";
8 nodes = {
9 machine1 = { config, pkgs, ... }: {
10 # ...
11 };
12 machine2 = { config, pkgs, ... }: {
13 # ...
14 };
15 };
16 testScript = { nodes, ... }: ''
17 # ...
18 '';
19 }

195 https://nixos.org/manual/nixos/stable/index.html#sec-installation
196 https://nixos.org/manual/nixos/stable/index.html#sec-nixos-tests
197 https://www.qemu.org/
198 https://nixos.org/manual/nixos/stable/index.html#sec-nixos-tests
208 Support for running NixOS VM tests on macOSPage 107, 209 is also implemented but currently undocumented210.
209 https://github.com/NixOS/nixpkgs/issues/108984
210 https://github.com/NixOS/nixpkgs/issues/254552

2.9. NixOS 107

https://nixos.org/manual/nixos/stable/index.html#sec-installation
https://nixos.org/manual/nixos/stable/index.html#sec-nixos-tests
https://www.qemu.org/
https://nixos.org/manual/nixos/stable/index.html#sec-nixos-tests
https://github.com/NixOS/nixpkgs/issues/108984
https://github.com/NixOS/nixpkgs/issues/254552

nix.dev

The function testers.runNixOSTest takes a module199 to specify the test options200. Because this module
only sets configuration values, one can use the abbreviated module notation.
The following configuration values must be set:

• name201 defines the name of the test.
• nodes202 contains a set of named configurations, because a test script can involve more than one virtual
machine. Each virtual machine is created from a NixOS configuration.

• testScript203 defines the Python test script, either as literal string or as a function that takes a nodes
attribute. This Python test script can access the virtual machines via the names used for the nodes. It
has super user rights in the virtual machines. In the Python script each virtual machine is accessible via the
machine object. NixOS provides various methods204 to run tests on these configurations.

The test framework automatically starts the virtual machines and runs the Python script.

Minimal example

As a minimal test on the default configuration, we will check if the user root and alice can run Firefox. We will
build the example up from scratch.

1. Use a pinned version of Nixpkgs (page 158), and explicitly set configuration options and overlays (page 148) to
avoid them being inadvertently overridden by global configuration:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11

↪→";
3 pkgs = import nixpkgs { config = {}; overlays = []; };
4 in
5

6 pkgs.testers.runNixOSTest {
7 # ...
8 }

2. Label the test with a descriptive name:

1 name = "minimal-test";

3. Because this example only uses one virtual machine, the node we specify is simply calledmachine. This name
is arbitrary and can be chosen freely. As configuration you use the relevant parts of the default configuration,
which we used in a previous tutorial (page 98):

1 nodes.machine = { config, pkgs, ... }: {
2 users.users.alice = {
3 isNormalUser = true;
4 extraGroups = ["wheel"];
5 packages = with pkgs; [
6 firefox
7 tree
8];
9 };
10

11 system.stateVersion = "23.11";
12 };

4. This is the test script:
199 https://nixos.org/manual/nixos/stable/#sec-writing-modules
200 https://nixos.org/manual/nixos/stable/index.html#sec-test-options-reference
201 https://nixos.org/manual/nixos/stable/index.html#test-opt-name
202 https://nixos.org/manual/nixos/stable/index.html#test-opt-nodes
203 https://nixos.org/manual/nixos/stable/index.html#test-opt-testScript
204 https://nixos.org/manual/nixos/stable/index.html#ssec-machine-objects

108 Chapter 2. Tutorials

https://nixos.org/manual/nixos/stable/#sec-writing-modules
https://nixos.org/manual/nixos/stable/index.html#sec-test-options-reference
https://nixos.org/manual/nixos/stable/index.html#test-opt-name
https://nixos.org/manual/nixos/stable/index.html#test-opt-nodes
https://nixos.org/manual/nixos/stable/index.html#test-opt-testScript
https://nixos.org/manual/nixos/stable/index.html#ssec-machine-objects

nix.dev

1 machine.wait_for_unit("default.target")
2 machine.succeed("su -- alice -c 'which firefox'")
3 machine.fail("su -- root -c 'which firefox'")

This Python script refers to machine which is the name chosen for the virtual machine configuration used in
the nodes attribute set.
The script waits until systemd reaches default.target. It uses the su command to switch between users
and the which command to check if the user has access to firefox. It expects that the command which
firefox to succeed for user alice and to fail for root.
This script will be the value of the testScript attribute.

The complete minimal-test.nix file content looks like the following:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
3 pkgs = import nixpkgs { config = {}; overlays = []; };
4 in
5

6 pkgs.testers.runNixOSTest {
7 name = "minimal-test";
8

9 nodes.machine = { config, pkgs, ... }: {
10

11 users.users.alice = {
12 isNormalUser = true;
13 extraGroups = ["wheel"];
14 packages = with pkgs; [
15 firefox
16 tree
17];
18 };
19

20 system.stateVersion = "23.11";
21 };
22

23 testScript = ''
24 machine.wait_for_unit("default.target")
25 machine.succeed("su -- alice -c 'which firefox'")
26 machine.fail("su -- root -c 'which firefox'")
27 '';
28 }

Running tests

To set up all machines and run the test script:

$ nix-build minimal-test.nix

...
test script finished in 10.96s
cleaning up
killing machine (pid 10)
(0.00 seconds)
/nix/store/bx7z3imvxxpwkkza10vb23czhw7873w2-vm-test-run-minimal-test

2.9. NixOS 109

nix.dev

Interactive Python shell in the virtual machine

When developing tests or when something breaks, it’s useful to interactively tinker with the test or access a terminal
for a machine.
To start an interactive Python session with the testing framework:

$ $(nix-build -A driverInteractive minimal-test.nix)/bin/nixos-test-driver

Here you can run any of the testing operations. Execute the testScript attribute from minimal-test.nix
with the test_script() function.
If a virtual machine is not yet started, the test environment takes care of it on the first call of a method on a machine
object.
But you can also manually trigger the start of the virtual machine with:

>>> machine.start()

for a specific node,
or

>>> start_all()

for all nodes.
You can enter an interactive shell on the virtual machine using:

>>> machine.shell_interact()

and run shell commands like:

uname -a

Linux server 5.10.37 #1-NixOS SMP Fri May 14 07:50:46 UTC 2021 x86_64 GNU/Linux

Re-running successful tests

Because test results are kept in the Nix store, a successful test is cached. This means that Nix will not run the test a
second time as long as the test setup (node configuration and test script) stays semantically the same. Therefore, to
run a test again, one needs to remove the result.
If you would try to delete the result using the symbolic link, you will get the following error:

nix-store --delete ./result

finding garbage collector roots...
0 store paths deleted, 0.00 MiB freed
error: Cannot delete path '/nix/store/4klj06bsilkqkn6h2sia8dcsi72wbcfl-vm-test-run-
↪→unnamed' since it is still alive. To find out why, use: nix-store --query --roots

Instead, remove the symbolic link and only then remove the cached result:

rm ./result
nix-store --delete /nix/store/4klj06bsilkqkn6h2sia8dcsi72wbcfl-vm-test-run-unnamed

This can be also done with one command:

result=$(readlink -f ./result) rm ./result && nix-store --delete $result

110 Chapter 2. Tutorials

nix.dev

Tests with multiple virtual machines

Tests can involve multiple virtual machines, for example to test client-server-communication.
The following example setup includes:

• A virtual machine named server running nginx205 with default configuration.
• A virtual machine named client that has curl available to make an HTTP request.
• A testScript orchestrating testing logic between client and server.

The complete client-server-test.nix file content looks like the following:

let
nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
pkgs = import nixpkgs { config = {}; overlays = []; };

in

pkgs.testers.runNixOSTest {
name = "client-server-test";

nodes.server = { pkgs, ... }: {
networking = {

firewall = {
allowedTCPPorts = [80];

};
};
services.nginx = {

enable = true;
virtualHosts."server" = {};

};
};

nodes.client = { pkgs, ... }: {
environment.systemPackages = with pkgs; [
curl

];
};

testScript = ''
server.wait_for_unit("default.target")
client.wait_for_unit("default.target")
client.succeed("curl http://server/ | grep -o \"Welcome to nginx!\"")

'';
}

The test script performs the following steps:
1) Start the server and wait for it to be ready.
2) Start the client and wait for it to be ready.
3) Run curl on the client and use grep to check the expected return string. The test passes or fails based on

the return value.
Run the test:

$ nix-build client-server-test.nix

205 https://nginx.org/en/

2.9. NixOS 111

https://nginx.org/en/

nix.dev

Additional information regarding NixOS tests

• Running integration tests on CI requires hardware acceleration, which many CIs do not support.
To run integration tests in GitHub Actions (page 144) see how to disable hardware acceleration206.

• NixOS comes with a large set of tests that can serve as educational examples.
A good inspiration is Matrix bridging with an IRC207.

Next steps

• Module system deep dive (page 76)
• Building a bootable ISO image (page 103)
• Building and running Docker images (page 104)

Provisioning remote machines via SSH

It is possible to replace any Linux installation with a NixOS configuration on running systems using
nixos-anywhere211 and disko212.

Introduction

In this tutorial, you will deploy a NixOS configuration to a running computer.

What will you learn?

You’ll learn how to
• Specify a minimal NixOS configuration with a declarative disk layout and SSH access
• Check that a configuration is valid
• Deploy and update a NixOS configuration on a remote machine

What do you need?

• Familiarity with the Nix language (page 13)
• Familiarity with the Module system (page 73)

For a successful unattended installation, ensure for the target machine that:
• It is a QEMU virtual machine running Linux

– With kexec213 support
– On the x86-64 or aarch64 instruction set architecture (ISA)
– With at least 1 GB of RAM

206 https://github.com/cachix/install-nix-action#how-do-i-run-nixos-tests
207 https://github.com/NixOS/nixpkgs/blob/master/nixos/tests/matrix/appservice-irc.nix
211 https://nix-community.github.io/nixos-anywhere/
212 https://github.com/nix-community/disko
213 https://en.wikipedia.org/wiki/Kexec

112 Chapter 2. Tutorials

https://github.com/cachix/install-nix-action#how-do-i-run-nixos-tests
https://github.com/NixOS/nixpkgs/blob/master/nixos/tests/matrix/appservice-irc.nix
https://nix-community.github.io/nixos-anywhere/
https://github.com/nix-community/disko
https://en.wikipedia.org/wiki/Kexec

nix.dev

This may also be a live system booted from USB, such as the NixOS installer214.
• The IP address is configured automatically with DHCP
• You can login via SSH

– With public key authentication (preferred), or password
– As user root or another user with sudo permissions

The local machine only needs a working Nix installation (page 1).
We call the target machine target-machine in this tutorial. Replace it with the actual hostname or IP address.

Prepare the environment

Create a new project directory and enter it with your shell:

mkdir remote
cd remote

Specify dependencies (page 138) on nixpkgs, disko, and nixos-anywhere:

$ nix-shell -p npins
[nix-shell:remote]$ npins init
[nix-shell:remote]$ npins add github nix-community disko
[nix-shell:remote]$ npins add github nix-community nixos-anywhere

Create a new file shell.nix which provides all needed tooling using the pinned dependencies:

let
sources = import ./npins;
pkgs = import sources.nixpkgs {};

in

pkgs.mkShell {
nativeBuildInputs = with pkgs; [
npins
nixos-anywhere
nixos-rebuild

];
shellHook = ''
export NIX_PATH="nixpkgs=${sources.nixpkgs}:nixos-config=$PWD/configuration.nix

↪→"
'';

}

Now exit the temporary environment and enter the newly specified one:

[nix-shell:remote]$ exit
$ nix-shell

This shell environment is ready to use well-defined versions of Nixpkgs with nixos-anywhere and
nixos-rebuild.

Important: Run all following commands in this environment.

214 https://nixos.org/download/#download-nixos-accordion

2.9. NixOS 113

https://nixos.org/download/#download-nixos-accordion

nix.dev

Create a NixOS configuration

The new NixOS configuration will consist of the general system configuration and a disk layout specification.
The disk layout in this example describes a single disk with amaster boot record215 (MBR) and EFI system partition216
(ESP) partition, and a root file system that takes all remaining available space. It will work on both EFI and BIOS
systems.
Create a new file single-disk-layout.nix with the disk layout specification:

1 { ... }:
2

3 {
4 disko.devices.disk.main = {
5 type = "disk";
6 content = {
7 type = "gpt";
8 partitions = {
9 MBR = {
10 priority = 0;
11 size = "1M";
12 type = "EF02";
13 };
14 ESP = {
15 priority = 1;
16 size = "500M";
17 type = "EF00";
18 content = {
19 type = "filesystem";
20 format = "vfat";
21 mountpoint = "/boot";
22 };
23 };
24 root = {
25 priority = 2;
26 size = "100%";
27 content = {
28 type = "filesystem";
29 format = "ext4";
30 mountpoint = "/";
31 };
32 };
33 };
34 };
35 };
36 }

Create the file configuration.nix, which imports the disk layout definition and specifies which disk to format:

Tip: If you don’t know the target disk’s device identifier, list all devices on the target machine with lsblk:

$ ssh target-machine lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 256G 0 disk
├─sda1 8:1 0 248.5G 0 part /nix/store
│ /
└─sda2 8:2 0 7.5G 0 part [SWAP]
sr0 11:0 1 1024M 0 rom

215 https://en.wikipedia.org/wiki/Master_boot_record
216 https://en.wikipedia.org/wiki/EFI_system_partition

114 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/EFI_system_partition

nix.dev

In this example, the disk name is sda. The block device path is then /dev/sda. Note that value for later.

1 { modulesPath, ... }:
2

3 let
4 diskDevice = "/dev/sda";
5 sources = import ./npins;
6 in
7 {
8 imports = [
9 (modulesPath + "/profiles/qemu-guest.nix")
10 (sources.disko + "/module.nix")
11 ./single-disk-layout.nix
12];
13

14 disko.devices.disk.main.device = diskDevice;
15

16 boot.loader.grub = {
17 devices = [diskDevice];
18 efiSupport = true;
19 efiInstallAsRemovable = true;
20 };
21

22 services.openssh.enable = true;
23

24 users.users.root.openssh.authorizedKeys.keys = [
25 "<your SSH key here>"
26];
27

28 system.stateVersion = "24.11";
29 }

Important: Replace /dev/sda with your disk block device path.
Replace the <your SSH key here> string with the SSH public key that you want to use for future logins as user
root.

Detailed explanation

The diskDevice variable in the let block defines the path of the disk block device:

3 let
4 diskDevice = "/dev/sda";
5 sources = import ./npins;
6 in

It is used to set the target for the partitioning and formatting as described in the disk layout specification. It is also
used in the boot loader configuration to make it bootable on both legacy BIOS as well as UEFI systems:

14 disko.devices.disk.main.device = diskDevice;
15

16 boot.loader.grub = {
17 devices = [diskDevice];
18 efiSupport = true;
19 efiInstallAsRemovable = true;
20 };

The qemu-guest.nix module makes this system compatible for running inside a QEMU virtual machine:

2.9. NixOS 115

nix.dev

8 imports = [
9 (modulesPath + "/profiles/qemu-guest.nix")
10 (sources.disko + "/module.nix")
11 ./single-disk-layout.nix
12];

From a disk layout specification, the disko library generates a partitioning script and the portion of the NixOS
configuration that mounts the partitions accordingly at boot time. The first line imports the library, the second line
applies the disk layout:

8 imports = [
9 (modulesPath + "/profiles/qemu-guest.nix")
10 (sources.disko + "/module.nix")
11 ./single-disk-layout.nix
12];

Test the disk layout

Check that the disk layout is valid:

nix-build -E "((import <nixpkgs> {}).nixos [./configuration.nix]).installTest"

This command runs the complete installation in a virtual machine by building a derivation in the installTest
attribute provided by the disko module.

Deploy the system

To deploy the system, build the configuration and the corresponding disk formatting script, and run
nixos-anywhere using the results:

Important: Replace target-host with the hostname or IP address of your target machine.

toplevel=$(nixos-rebuild build --no-flake)
diskoScript=$(nix-build -E "((import <nixpkgs> {}).nixos [./configuration.nix]).
↪→diskoScript")
nixos-anywhere --store-paths "$diskoScript" "$toplevel" root@target-host

Note: If you don’t have public key authentication: Set the environment variable SSH_PASS to your password then
append the --env-password flag to the nixos-anywhere command.

nixos-anywhere will now log into the target system, partition, format, and mount the disk, and install the NixOS
configuration. Then, it reboots the system.

116 Chapter 2. Tutorials

nix.dev

Update the system

To update the system, run npins and re-deploy the configuration:

npins update nixpkgs
nixos-rebuild switch --no-flake --target-host root@target-host

nixos-anywhere is not needed any more, unless you want to change the disk layout.

Next steps

• Setting up an HTTP binary cache (page 124)
• Setting up post-build hooks (page 142)

References

• nixos-anywhere project page217

• disko project repository218

• Collection of disk layout examples219

Installing NixOS on a Raspberry Pi

This tutorial assumes you have a Raspberry Pi 4 Model B with 4GB RAM220.
Before starting this tutorial, make sure you have all the necessary hardware221:

• HDMI cable/adapter.
• 8GB+ SD card.
• SD card reader (in case your machine doesn’t have an SD slot).
• Power cable for your Raspberry Pi.
• USB keyboard.

Note: This tutorial was written for the Raspberry Pi 4B. Using a previously supported model like the 3B or 3B+ is
possible with some modifications to this tutorial.

Booting NixOS live image

Note: Booting from USB may require an EEPROM firmware upgrade. This tutorial boots from an SD card to avoid
such hiccups.

To prepare the AArch64 image on another device with Nix, run the following commands:

217 https://nix-community.github.io/nixos-anywhere/
218 https://github.com/nix-community/disko
219 https://github.com/nix-community/disko/tree/master/example
220 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
221 https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/1

2.9. NixOS 117

https://nix-community.github.io/nixos-anywhere/
https://github.com/nix-community/disko
https://github.com/nix-community/disko/tree/master/example
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/1

nix.dev

$ nix-shell -p wget zstd

[nix-shell:~]$ wget https://hydra.nixos.org/build/226381178/download/1/nixos-sd-
↪→image-23.11pre500597.0fbe93c5a7c-aarch64-linux.img.zst
[nix-shell:~]$ unzstd -d nixos-sd-image-23.11pre500597.0fbe93c5a7c-aarch64-linux.
↪→img.zst
[nix-shell:~]$ dmesg --follow

Note: You can download a recent image from Hydra222, clicking on the latest successful build (marked with a green
checkmark), and copying the link to the build product image.

Note: It may be more convenient to use a software like Etcher223 to flash the image to your SD card if you are on a
system where it’s available.

Your terminal should be printing kernel messages as they come in.
Plug in your SD card and your terminal should print what device it got assigned, for example /dev/sdX.
Press Ctrl+C to stop dmesg --follow.
Copy NixOS to your SD card by replacing sdX with the name of your device in the following command:

[nix-shell:~]$ sudo dd if=nixos-sd-image-23.11pre500597.0fbe93c5a7c-aarch64-linux.
↪→img of=/dev/sdX bs=4096 conv=fsync status=progress

Once that command exits,move the SD card into your Raspberry Pi and power it on.
You should be greeted with a fresh shell!
In case the image doesn’t boot, it’s worth updating the firmware224 and booting the image again.

Getting internet connection

Run sudo -i to get a root shell for the rest of the tutorial.
At this point you’ll need an internet connection. If you can use an ethernet cable, plug it in and skip to the next section.
If you’re connecting to wifi, run iwconfig to find the name of your wireless network interface. If it’s wlan0,
replace SSID and passphrase with your data and run:

wpa_supplicant -B -i wlan0 -c <(wpa_passphrase 'SSID' 'passphrase') &

Once you see in your terminal that connection is established, run host nixos.org to check that the DNS resolves
correctly.
In case you’ve made a typo, run pkill wpa_supplicant and start over.
222 https://hydra.nixos.org/job/nixos/trunk-combined/nixos.sd_image.aarch64-linux
223 https://www.balena.io/etcher/
224 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#bootloader_update_stable

118 Chapter 2. Tutorials

https://hydra.nixos.org/job/nixos/trunk-combined/nixos.sd_image.aarch64-linux
https://www.balena.io/etcher/
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#bootloader_update_stable

nix.dev

Updating firmware

To benefit from updates and bug fixes from the vendor, we’ll start by updating Raspberry Pi firmware:

nix-shell -p raspberrypi-eeprom
mount /dev/disk/by-label/FIRMWARE /mnt
BOOTFS=/mnt FIRMWARE_RELEASE_STATUS=stable rpi-eeprom-update -d -a

Installing and configuring NixOS

Now we’ll install NixOS with our own configuration, here creating a guest user and enabling the SSH daemon.
In the let binding below, change the value of the SSID and SSIDpassword variables to the SSID and
passphrase values you used previously:

1 { config, pkgs, lib, ... }:
2

3 let
4 user = "guest";
5 password = "guest";
6 SSID = "mywifi";
7 SSIDpassword = "mypassword";
8 interface = "wlan0";
9 hostname = "myhostname";
10 in {
11

12 boot = {
13 kernelPackages = pkgs.linuxKernel.packages.linux_rpi4;
14 initrd.availableKernelModules = ["xhci_pci" "usbhid" "usb_storage"];
15 loader = {
16 grub.enable = false;
17 generic-extlinux-compatible.enable = true;
18 };
19 };
20

21 fileSystems = {
22 "/" = {
23 device = "/dev/disk/by-label/NIXOS_SD";
24 fsType = "ext4";
25 options = ["noatime"];
26 };
27 };
28

29 networking = {
30 hostName = hostname;
31 wireless = {
32 enable = true;
33 networks."${SSID}".psk = SSIDpassword;
34 interfaces = [interface];
35 };
36 };
37

38 environment.systemPackages = with pkgs; [vim];
39

40 services.openssh.enable = true;
41

42 users = {
43 mutableUsers = false;
44 users."${user}" = {
45 isNormalUser = true;

(continues on next page)

2.9. NixOS 119

nix.dev

(continued from previous page)
46 password = password;
47 extraGroups = ["wheel"];
48 };
49 };
50

51 hardware.enableRedistributableFirmware = true;
52 system.stateVersion = "23.11";
53 }

To save time on typing the whole configuration, download it:

curl -L https://tinyurl.com/tutorial-nixos-install-rpi4 > /etc/nixos/
↪→configuration.nix

Note: Credentials you write into a NixOS configuration will be stored in plain text in your /nix/store when
that configuration is built.
If you don’t want this to happen, you can enter your credentials at a console or use one of the community’s solutions
for encrypted secrets.

Due to the way the nixos-sd-image is designed, NixOS is actually already installed at this point, so we only
need to nixos-rebuild with our new configuration:

nixos-rebuild boot
reboot

If your system doesn’t boot, select the oldest configuration in the bootloader menu to get back to the live image and
start over.

Making changes

It booted, congratulations!
To make further changes to the configuration, search through NixOS options225, edit /etc/nixos/
configuration.nix, and update your system:

$ sudo -i
nixos-rebuild switch

Next steps

• Once you have a working OS, try upgrading it with nixos-rebuild switch --upgrade to install
more recent package versions, and reboot to the old configuration if something broke.

• To enable hardware acceleration for a nice graphical desktop experience, add the nixos-hardware226
module to your configuration:

1 imports = [
2 "${fetchTarball "https://github.com/NixOS/nixos-hardware/tarball/master"}/

↪→raspberry-pi/4"
3];

We recommend pinning the reference to nixos-hardware: Pinning Nixpkgs (page 158)
225 https://search.nixos.org/options
226 https://github.com/nixos/nixos-hardware

120 Chapter 2. Tutorials

https://search.nixos.org/options
https://github.com/nixos/nixos-hardware

nix.dev

• To tweak bootloader options affecting hardware, see config.txt options227. You can change these options
by running mount /dev/disk/by-label/FIRMWARE /mnt and opening /mnt/config.txt.

Deploying NixOS using Terraform

Assuming you’re familiar with the basics of Terraform228, by the end of this tutorial you will have provisioned an
Amazon Web Services (AWS) instance with Terraform, and will be able to use Nix to deploy incremental changes to
NixOS running on the instance.
We’ll look at how to boot a NixOS machine and how to deploy the incremental changes.

Booting NixOS image

1. Start by providing the Terraform executable:

$ nix-shell -p terraform

2. We are using Terraform Cloud229 as a state/locking backend230:

$ terraform login

3. Make sure to create an organization231, like myorganization, in your Terraform Cloud account.
4. Inside myorganization, create a workspace232 by choosing CLI-driven workflow and pick a name, like

myapp.
5. Inside your workspace, under Settings / General, change Execution Mode to Local.
6. Inside a new directory, create a main.tf file with the following contents. This will start an AWS instance

with the NixOS image using one SSH keypair and an SSH security group:

terraform {
backend "remote" {

organization = "myorganization"

workspaces {
name = "myapp"

}
}

}

provider "aws" {
region = "eu-central-1"

}

module "nixos_image" {
source = "git::https://github.com/tweag/terraform-nixos.git//aws_image_nixos?

↪→ref=5f5a0408b299874d6a29d1271e9bffeee4c9ca71"
release = "20.09"

}

resource "aws_security_group" "ssh_and_egress" {
ingress {

from_port = 22
to_port = 22

(continues on next page)
227 https://www.raspberrypi.org/documentation/configuration/config-txt/
228 https://www.terraform.io/intro/index.html
229 https://app.terraform.io
230 https://www.terraform.io/docs/state/purpose.html
231 https://app.terraform.io/app/organizations/new
232 https://app.terraform.io/app/cachix/workspaces/new

2.9. NixOS 121

https://www.raspberrypi.org/documentation/configuration/config-txt/
https://www.terraform.io/intro/index.html
https://app.terraform.io
https://www.terraform.io/docs/state/purpose.html
https://app.terraform.io/app/organizations/new
https://app.terraform.io/app/cachix/workspaces/new

nix.dev

(continued from previous page)
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]

}
}

resource "tls_private_key" "state_ssh_key" {
algorithm = "RSA"

}

resource "local_file" "machine_ssh_key" {
sensitive_content = tls_private_key.state_ssh_key.private_key_pem
filename = "${path.module}/id_rsa.pem"
file_permission = "0600"

}

resource "aws_key_pair" "generated_key" {
key_name = "generated-key-${sha256(tls_private_key.state_ssh_key.public_key_

↪→openssh)}"
public_key = tls_private_key.state_ssh_key.public_key_openssh

}

resource "aws_instance" "machine" {
ami = module.nixos_image.ami
instance_type = "t3.micro"
security_groups = [aws_security_group.ssh_and_egress.name]
key_name = aws_key_pair.generated_key.key_name

root_block_device {
volume_size = 50 # GiB

}
}

output "public_dns" {
value = aws_instance.machine.public_dns

}

The only NixOS specific snippet is:

module "nixos_image" {
source = "git::https://github.com/tweag/terraform-nixos.git/aws_image_nixos?

↪→ref=5f5a0408b299874d6a29d1271e9bffeee4c9ca71"
release = "20.09"

}

Note: The aws_image_nixos module will return a NixOS AMI given a NixOS release number233 so that the
aws_instance resource can reference the AMI in the instance_type234 argument.

5. Make sure to configure AWS credentials235.
6. Applying the Terraform configuration should get you a running NixOS:

233 https://status.nixos.org
234 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#instance_type
235 https://registry.terraform.io/providers/hashicorp/aws/latest/docs#authentication

122 Chapter 2. Tutorials

https://status.nixos.org
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#instance_type
https://registry.terraform.io/providers/hashicorp/aws/latest/docs#authentication

nix.dev

$ terraform init
$ terraform apply

Deploying NixOS changes

Once the AWS instance is running a NixOS image via Terraform, we can teach Terraform to always build the latest
NixOS configuration and apply those changes to your instance.

1. Create configuration.nix with the following contents:

1 { config, lib, pkgs, ... }: {
2 imports = [<nixpkgs/nixos/modules/virtualisation/amazon-image.nix>];
3

4 # Open https://search.nixos.org/options for all options
5 }

2. Append the following snippet to your main.tf:

module "deploy_nixos" {
source = "git::https://github.com/tweag/terraform-nixos.git//deploy_nixos?

↪→ref=5f5a0408b299874d6a29d1271e9bffeee4c9ca71"
nixos_config = "${path.module}/configuration.nix"
target_host = aws_instance.machine.public_ip
ssh_private_key_file = local_file.machine_ssh_key.filename
ssh_agent = false

}

3. Deploy:

$ terraform init
$ terraform apply

Caveats

• The deploy_nixos module requires NixOS to be installed on the target machine and Nix on the host
machine.

• The deploy_nixos module doesn’t work when the client and target architectures are different (unless you
use distributed builds236).

• If you need to inject a value into Nix, there is no elegant solution.
• Each machine is evaluated separately, so note that your memory requirements will grow linearly with the
number of machines.

Next steps

• It’s possible to switch to Google Compute Engine237.
• The deploy_nixos module238 supports a number of arguments, for example to upload keys.

236 https://nix.dev/manual/nix/stable/advanced-topics/distributed-builds.html
237 https://github.com/tweag/terraform-nixos/tree/master/google_image_nixos#readme
238 https://github.com/tweag/terraform-nixos/tree/master/deploy_nixos#readme

2.9. NixOS 123

https://nix.dev/manual/nix/stable/advanced-topics/distributed-builds.html
https://github.com/tweag/terraform-nixos/tree/master/google_image_nixos#readme
https://github.com/tweag/terraform-nixos/tree/master/deploy_nixos#readme

nix.dev

Setting up an HTTP binary cache

A binary cache stores pre-built Nix store objects239 and provides them to other machines over the network. Any
machine with a Nix store can be a binary cache for other machines.

Introduction

In this tutorial you will set up a Nix binary cache that will serve store objects from a NixOS machine over HTTP or
HTTPS.

What will you learn?

You’ll learn how to:
• Set up signing keys for your cache
• Enable the right services on the NixOS machine serving the cache
• Check that the setup works as intended

What do you need?

• A working Nix installation (page 1) on your local machine
• SSH access to a NixOS machine to use as a cache
If you’re new to NixOS, learn about the module system (page 73) and configure your first system with NixOS
virtual machines (page 98).

• (optional) A public IP and DNS domain
If you don’t host yourself, check NixOS-friendly hosters240 on the NixOS Wiki. Follow the tutorial on Provi-
sioning remote machines via SSH (page 112) to deploy your NixOS configuration.

For a cache on a local network, we assume:
• The hostname is cache (replace it with yours, or an IP address)
• The host serves store objects via HTTP on port 80 (this is the default)

For a publicly accessible cache, we assume:
• The domain name is cache.example.com (replace it with yours)
• The host serves store objects via HTTPS on port 443 (this is the default)

How long will it take?

• 25 minutes
239 https://nix.dev/manual/nix/latest/store/store-object
240 https://wiki.nixos.org/wiki/NixOS_friendly_hosters

124 Chapter 2. Tutorials

https://nix.dev/manual/nix/latest/store/store-object
https://wiki.nixos.org/wiki/NixOS_friendly_hosters

nix.dev

Set up services

For the NixOS machine hosting the cache, create a new configuration module in binary-cache.nix:

{ config, ... }:

{
services.nix-serve = {
enable = true;
secretKeyFile = "/var/secrets/cache-private-key.pem";

};

services.nginx = {
enable = true;
recommendedProxySettings = true;
virtualHosts.cache = {
locations."/".proxyPass = "http://${config.services.nix-serve.bindAddress}:$

↪→{toString config.services.nix-serve.port}";
};

};

networking.firewall.allowedTCPPorts = [
config.services.nginx.defaultHTTPListenPort

];
}

The options under services.nix-serve241 configure the binary cache service.
nix-serve doesn’t support IPv6 or SSL/HTTPS. The services.nginx242 options are used to set up a proxy,
which does support IPv6, to handle requests to the hostname cache.

Important: There is an optional HTTPS section (page 127) at the end of this tutorial.

Add the new NixOS module to the existing machine configuration:

{ config, ... }:

{
imports = [
./binary-cache.nix

];

...
}

From your local machine, deploy the new configuration:

nixos-rebuild switch --no-flake --target-host root@cache

Note: The binary cache daemon will report errors because there is no secret key file yet.

241 https://search.nixos.org/options?query=services.nix-serve
242 https://search.nixos.org/options?query=services.nginx

2.9. NixOS 125

https://search.nixos.org/options?query=services.nix-serve
https://search.nixos.org/options?query=services.nginx

nix.dev

Generate a signing key pair

A pair of private and public keys is required to ensure that the store objects in the cache are authentic.
To generate a key pair for the binary cache, replace the example hostname cache.example.com with your
hostname:

nix-store --generate-binary-cache-key cache.example.com cache-private-key.pem␣
↪→cache-public-key.pem

cache-private-key.pemwill be used by the binary cache daemon to sign the binaries as they are served. Copy
it to the location configured in services.nix-serve.secretKeyFile on the machine hosting the cache:

scp cache-private-key.pem root@cache:/var/secrets/cache-private-key.pem

Up until now, the binary cache daemon was in a restart loop due to the missing secret key file. Check that it now
works correctly:

ssh root@cache systemctl status nix-serve.service

Important: Configure Nix to use a custom binary cache (page 135) using cache-public-key.pem on your
local machine.

Test availability

The following steps check if everything is set up correctly and may help with identifying problems.

Check general availability

Test if the binary cache, reverse proxy, and firewall rules work as intended by querying the cache:

$ curl http://cache/nix-cache-info
StoreDir: /nix/store
WantMassQuery: 1
Priority: 30

Check store object signing

To test if store objects are signed correctly, inspect the metadata of a sample derivation. On the binary cache host,
build the hello package and get the .narinfo file from the cache:

$ hash=$(nix-build '<nixpkgs>' -A pkgs.hello | awk -F '/' '{print $4}' | awk -F '-
↪→' '{print $1}')
$ curl "http://cache/$hash.narinfo" | grep "Sig: "
...
Sig: cache.example.
↪→org:GyBFzocLAeLEFd0hr2noK84VzPUw0ArCNYEnrm1YXakdsC5FkO2Bkj2JH8Xjou+wxeXMjFKa0YP2AML7nBWsAg==

Make sure that the output contains this line prefixed with Sig: and shows the public key you generated.

126 Chapter 2. Tutorials

nix.dev

Serving the binary cache via HTTPS

If the binary cache is publicly accessible, it is possible to enforce HTTPS with Let’s Encrypt243 SSL certificates. Edit
your binary-cache.nix like this and make sure to replace the example URL and mail address with yours:

services.nginx = {
enable = true;
recommendedProxySettings = true;

- virtualHosts.cache = {
+ virtualHosts."cache.example.com" = {
+ enableACME = true;
+ forceSSL = true;

locations."/".proxyPass = "http://${config.services.nix-serve.bindAddress}:$
↪→{toString config.services.nix-serve.port}";

};
};

+ security.acme = {
+ acceptTerms = true;
+ certs = {
+ "cache.example.com".email = "you@example.com";
+ };
+ };

networking.firewall.allowedTCPPorts = [
config.services.nginx.defaultHTTPListenPort

+ config.services.nginx.defaultSSLListenPort
];

Rebuild the system to deploy these changes:

nixos-rebuild switch --no-flake --target-host root@cache.example.com

Next steps

If your binary cache is already a remote build machine244, it will serve all store objects in its Nix store.
• Configure Nix to use a custom binary cache (page 135) using the binary cache’s hostname and the generated
public key

• Setting up post-build hooks (page 142) to upload store objects to the binary cache
• Setting up distributed builds (page 128)

To save storage space, please refer to the following NixOS configuration attributes:
• nix.gc245: Options for automatic garbage collection
• nix.optimise246: Options for periodic Nix store optimisation

243 https://letsencrypt.org/
244 https://nix.dev/manual/nix/latest/advanced-topics/distributed-builds
245 https://search.nixos.org/options?query=nix.gc
246 https://search.nixos.org/options?query=nix.optimise

2.9. NixOS 127

https://letsencrypt.org/
https://nix.dev/manual/nix/latest/advanced-topics/distributed-builds
https://search.nixos.org/options?query=nix.gc
https://search.nixos.org/options?query=nix.optimise

nix.dev

Alternatives

• nix-serve-ng247: A drop-in replacement for nix-serve, written in Haskell
• The SSH Store248, Experimental SSH Store249, and the S3 Binary Cache Store250 can also be used to serve a
cache. There are many commercial providers for S3-compatible storage, for example:

– Amazon S3
– Tigris
– Cloudflare R2

• attic251: Nix binary cache server backed by an S3-compatible storage provider
• Cachix252: Nix binary cache as a service

References

• Nix Manual on HTTP Binary Cache Store253

• services.nix-serve module options254

• services.nginx module options255

Setting up distributed builds

Nix can speed up builds by spreading the work across multiple computers at once.

Introduction

In this tutorial, you’ll set up a separate build machine and configure your local machine to offload builds to it.

What will you learn?

You’ll learn how to
• Create a new user for remote build access from a local machine to the remote builder
• Configure remote builders with a sustainable setup
• Test remote builder connectivity and authentication
• Configure the local machine to automatically distribute builds

247 https://github.com/aristanetworks/nix-serve-ng
248 https://nix.dev/manual/nix/latest/store/types/ssh-store
249 https://nix.dev/manual/nix/latest/store/types/experimental-ssh-store
250 https://nix.dev/manual/nix/latest/store/types/s3-binary-cache-store
251 https://github.com/zhaofengli/attic
252 https://www.cachix.org
253 https://nix.dev/manual/nix/latest/store/types/http-binary-cache-store
254 https://search.nixos.org/options?query=services.nix-serve
255 https://search.nixos.org/options?query=services.nginx

128 Chapter 2. Tutorials

https://github.com/aristanetworks/nix-serve-ng
https://nix.dev/manual/nix/latest/store/types/ssh-store
https://nix.dev/manual/nix/latest/store/types/experimental-ssh-store
https://nix.dev/manual/nix/latest/store/types/s3-binary-cache-store
https://github.com/zhaofengli/attic
https://www.cachix.org
https://nix.dev/manual/nix/latest/store/types/http-binary-cache-store
https://search.nixos.org/options?query=services.nix-serve
https://search.nixos.org/options?query=services.nginx

nix.dev

What do you need?

• Familiarity with the Nix language (page 13)
• Familiarity with the Module system (page 73)
• A local machine (example hostname: localmachine)
The computer with Nix installed (page 1) that distributes builds to other machines.

• A remote machine (example hostname: remotemachine)
A computer running NixOS that accepts build jobs from the local machine. Follow Provisioning remote ma-
chines via SSH (page 112) to set up a remote NixOS system.

How long will it take?

• 25 minutes

Create an SSH key pair

The local machine’s Nix daemon runs as the root user and will need the private key file to authenticate itself to
remote machines. The remote machine will need the public key to recognize the local machine.
On the local machine, run the following command as root to create an SSH key pair:

ssh-keygen -f /root/.ssh/remotebuild

Note: The name and location of the key pair files can be freely chosen.

Set up the remote builder

In the NixOS configuration directory of the remote machine, create the file remote-builder.nix:

{
users.users.remotebuild = {
isNormalUser = true;
createHome = false;
group = "remotebuild";

openssh.authorizedKeys.keyFiles = [./remotebuild.pub];
};

users.groups.remotebuild = {};

nix.settings.trusted-users = ["remotebuild"];
}

Copy the file remotebuild.pub into this directory.
This configuration module creates a new user remotebuild with no home directory. The root user on the local
machine will be able to log into the remote builder via SSH using the previously generated SSH key.
Add the new NixOS module to the existing configuration of the remote machine:

2.9. NixOS 129

nix.dev

{
imports = [
./remote-builder.nix

];

...
}

Activate the new configuration as root:

nixos-rebuild switch --no-flake --target-host root@remotemachine

Test authentication

Make sure that the SSH connection and authentication work. On the local machine, run as root:

ssh remotebuild@remotemachine -i /root/.ssh/remotebuild "echo hello"
Could not chdir to home directory /home/remotebuild: No such file or directory
hello

If the hello message is visible, the authentication works. The Could not chdir to ... message confirms
that the remote user has no home directory.
This test login also adds the host key of the remote builder to the /root/.ssh/known_hosts file of the local
machine. Future logins will not be interrupted by host key checks.

Set up distributed builds

Note: If your local machine runs NixOS, skip this section and configure Nix through module options (page 131).

Configure Nix to use the remote builder by adding to the Nix configuration file256 as root:

cat << EOF >> /etc/nix/nix.conf
builders = ssh-ng://remotebuild@remotebuilder $(nix-instantiate --eval -E builtins.
↪→currentSystem) /root/.ssh/remotemachine - - nixos-test,big-parallel,kvm
builders-use-substitutes = true

Detailed explanation

The first line registers the remote machine as a remote builder by specifying
• The protocol, user, and hostname
• The local machine’s system type257

This will delegate jobs for that system type to the remote machine.
• The location of the SSH key
• A list of supported system features258

This particular list must be specified in order to delegate building compilers and running NixOS VM tests
(page 107) to remote machines.

See the reference documentation on the builders setting259 for details.
256 https://nix.dev/manual/nix/2.23/command-ref/conf-file
257 https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system
258 https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system-features
259 https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-builders

130 Chapter 2. Tutorials

https://nix.dev/manual/nix/2.23/command-ref/conf-file
https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system
https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system-features
https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-builders

nix.dev

The second line instructs all remote builders to obtain dependencies from its own binary caches instead of from the
local machine. This assumes that the remote builders’ internet connection is at least as fast as the local machine’s
internet connection.
To activate this configuration, restart the Nix daemon:

Linux

On Linux with systemd, run as root:

systemctl restart nix-daemon.service

macOS

On macOS, run as root:

sudo launchctl stop org.nixos.nix-daemon
sudo launchctl start org.nixos.nix-daemon

NixOS
If your local machine runs NixOS, in its configuration directory create the file distributed-builds.nix:

{ pkgs, ... }:
{

nix.distributedBuilds = true;
nix.settings.builders-use-substitutes = true;

nix.buildMachines = [
{
hostName = "remotebuilder";
sshUser = "remotebuild";
sshKey = "/root/.ssh/remotebuild";
system = pkgs.stdenv.hostPlatform.system;
supportedFeatures = ["nixos-test" "big-parallel" "kvm"];

}
];

}

Detailed explanation

This configuration module enables distributed builds and adds the remote builder, specifying:
• The SSH hostname and username
• The location of the SSH key
• Which local machine’s system type260

This will delegate jobs for that system type to the remote machine.
• A list of supported system features261

This particular list must be specified in order to delegate building compilers and running NixOS VM tests
(page 107) to remote machines.

260 https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system
261 https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system-features

2.9. NixOS 131

https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system
https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-system-features

nix.dev

See the NixOS option documentation on nix.buildMachines262 for details.
The builders-use-substitutes instructs all remote builders to obtain dependencies from its own binary
caches instead of from the local machine. This assumes that the remote builders’ internet connection is at least as fast
as the local machine’s internet connection.
Add the new NixOS module to the existing machine configuration:

{
imports = [
./distributed-builds.nix

];

...
}

Activate the new configuration as root:

nixos-rebuild switch

Test distributed builds

Try building a new derivation on the local machine:

$ nix-build --max-jobs 0 -E << EOF
(import <nixpkgs> {}).writeText "test" "$(date)"
EOF
this derivation will be built:

/nix/store/9csjdxv6ir8ccnjl6ijs36izswjgchn0-test.drv
building '/nix/store/9csjdxv6ir8ccnjl6ijs36izswjgchn0-test.drv' on 'ssh://
↪→remotebuilder'...
Could not chdir to home directory /home/remotebuild: No such file or directory
copying 0 paths...
copying 1 paths...
copying path '/nix/store/hvj5vyg4723nly1qh5a8daifbi1yisb3-test' from 'ssh://
↪→remotebuilder'...
/nix/store/hvj5vyg4723nly1qh5a8daifbi1yisb3-test

The resulting derivation changes on every invocation because it depends on the current system time, and thus can
never be in the local cache. The --max-jobs 0 command line argument263 forces Nix to build it on the remote
builder.
The last output line contains the output path and indicates that build distribution works as expected.

Optimise the remote builder configuration

To maximise parallelism, enable automatic garbage collection, and prevent Nix builds from consuming all memory,
add the following lines to your remote-builder.nix configuration module:

{
users.users.remotebuild = {

isNormalUser = true;
createHome = false;
group = "remotebuild";

openssh.authorizedKeys.keyFiles = [./remotebuild.pub];

(continues on next page)
262 https://search.nixos.org/options?query=nix.buildMachines
263 https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-max-jobs

132 Chapter 2. Tutorials

https://search.nixos.org/options?query=nix.buildMachines
https://nix.dev/manual/nix/2.23/command-ref/conf-file#conf-max-jobs

nix.dev

(continued from previous page)
};

users.groups.remotebuild = {};

- nix.settings.trusted-users = ["remotebuild"];
+ nix = {
+ nrBuildUsers = 64;
+ settings = {
+ trusted-users = ["remotebuild"];
+
+ min-free = 10 * 1024 * 1024;
+ max-free = 200 * 1024 * 1024;

+ max-jobs = "auto";
+ cores = 0;
+ };
+ };

+ systemd.services.nix-daemon.serviceConfig = {
+ MemoryAccounting = true;
+ MemoryMax = "90%";
+ OOMScoreAdjust = 500;
+ };
}

Tip: Refer to the Nix reference manual264 for details on the options available in nix.settings265.

Remote builders can have different performance characteristics. For each nix.buildMachines item, set the
maxJobs, speedFactor, and supportedFeatures attributes correctly for each different remote builder.
This helps Nix on the local machine distributing builds the optimal way.

Tip: Refer to the NixOS option documentation on nix.buildMachines266 for details.

Set the nix.buildMachines.*.publicHostKey field to each remote builder’s public host key to secure
build distribution against man-in-the-middle scenarios.

Next steps

• Configure Nix to use a custom binary cache (page 135) on each remote builder
• Setting up post-build hooks (page 142) to upload store objects to a binary cache

To set up multiple builders, repeat the instructions in the Set up the remote builder (page 129) section for each remote
builder. Add all new remote builders to the nix.buildMachines attribute shown in the Set up distributed builds
(page 130) section.
264 https://nix.dev/manual/nix/2.23/command-ref/conf-file
265 https://search.nixos.org/options?show=nix.settings
266 https://search.nixos.org/options?query=nix.buildMachines

2.9. NixOS 133

https://nix.dev/manual/nix/2.23/command-ref/conf-file
https://search.nixos.org/options?show=nix.settings
https://search.nixos.org/options?query=nix.buildMachines

nix.dev

Alternatives

• nixbuild.net267 - Nix remote builders as a service
• Hercules CI268 - Continuous integration with automatic build distribution
• garnix269 - Hosted continuous integration with build distribution

References

• Nix reference manual: Settings for distributed builds270

267 https://nixbuild.net
268 https://hercules-ci.com/
269 https://garnix.io/
270 https://nix.dev/manual/nix/latest/command-ref/conf-file#conf-builders

134 Chapter 2. Tutorials

https://nixbuild.net
https://hercules-ci.com/
https://garnix.io/
https://nix.dev/manual/nix/latest/command-ref/conf-file#conf-builders

CHAPTER

THREE

GUIDES

These sections contain guides to getting things done.

3.1 Recipes

3.1.1 Configure Nix to use a custom binary cache

Nix can be configured to use a binary cache with the substituters271 and trusted-public-keys272 set-
tings, either exclusively or in addition to cache.nixos.org273.

Tip: Follow the tutorial to set up an HTTP binary cache (page 124) and create a key pair for signing store objects.

For example, given a binary cache athttps://example.orgwith public keyMy56...Q==%, and some deriva-
tion in default.nix, make Nix exclusively use that cache once by passing settings as command line flags274:

$ nix-build --substituters https://example.org --trusted-public-keys example.
↪→org:My56...Q==%

To permanently use the custom cache in addition to the public cache, add to the Nix configuration file275:

$ echo "extra-substituters = https://example.org" >> /etc/nix/nix.conf
$ echo "extra-trusted-public-keys = example.org:My56...Q==%" >> /etc/nix/nix.conf

To always use only the custom cache:

$ echo "substituters = https://example.org" >> /etc/nix/nix.conf
$ echo "trusted-public-keys = example.org:My56...Q==%" >> /etc/nix/nix.conf

NixOS
On NixOS, Nix is configured through the nix.settings276 option:

1 { ... }: {
2 nix.settings = {
3 substituters = ["https://example.org"];
4 trusted-public-keys = ["example.org:My56...Q==%"];
5 };
6 }

271 https://nix.dev/manual/nix/2.21/command-ref/conf-file.html#conf-substituters
272 https://nix.dev/manual/nix/2.21/command-ref/conf-file.html#conf-trusted-public-keys
273 http://cache.nixos.org
274 https://nix.dev/manual/nix/2.21/command-ref/conf-file#command-line-flags
275 https://nix.dev/manual/nix/2.21/command-ref/conf-file#configuration-file
276 https://search.nixos.org/options?show=nix.settings

135

https://nix.dev/manual/nix/2.21/command-ref/conf-file.html#conf-substituters
https://nix.dev/manual/nix/2.21/command-ref/conf-file.html#conf-trusted-public-keys
http://cache.nixos.org
https://nix.dev/manual/nix/2.21/command-ref/conf-file#command-line-flags
https://nix.dev/manual/nix/2.21/command-ref/conf-file#configuration-file
https://search.nixos.org/options?show=nix.settings

nix.dev

3.1.2 Automatic environment activation with direnv

Instead of manually activating the environment for each project, you can reload a declarative shell (page 9) every time
you enter the project’s directory or change the shell.nix inside it.

1. Make nix-direnv available277

2. Hook it into your shell278

For example, write a shell.nix with the following contents:

1 let
2 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
3 pkgs = import nixpkgs { config = {}; overlays = []; };
4 in
5

6 pkgs.mkShellNoCC {
7 packages = with pkgs; [
8 hello
9];
10 }

From the top-level directory of your project, run:

$ echo "use nix" > .envrc && direnv allow

The next time you launch your terminal and enter the top-level directory of your project, direnv will automatically
launch the shell defined in shell.nix.

$ cd myproject
$ which hello
/nix/store/1gxz5nfzfnhyxjdyzi04r86sh61y4i00-hello-2.12.1/bin/hello

direnv will also check for changes to the shell.nix file.
Make the following addition:

let
nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
pkgs = import nixpkgs { config = {}; overlays = []; };

in

pkgs.mkShellNoCC {
packages = with pkgs; [

hello
];

+
+ shellHook = ''
+ hello
+ '';
}

The running environment should reload itself after the first interaction (run any command or press Enter).

Hello, world!

277 https://github.com/nix-community/nix-direnv
278 https://direnv.net/docs/hook.html

136 Chapter 3. Guides

https://github.com/nix-community/nix-direnv
https://direnv.net/docs/hook.html

nix.dev

3.1.3 Dependencies in the development shell

When packaging software in default.nix (page 41), you’ll want a development environment in shell.nix
(page 9) to enter conveniently with nix-shell or automatically with direnv (page 136).
How to share the package’s dependencies in default.nix with the development environment in shell.nix?

Summary

Use the inputsFrom attribute to pkgs.mkShellNoCC279:

1 # default.nix
2 let
3 pkgs = import <nixpkgs> {};
4 build = pkgs.callPackage ./build.nix {};
5 in
6 {
7 inherit build;
8 shell = pkgs.mkShellNoCC {
9 inputsFrom = [build];
10 };
11 }

Import the shell attribute in shell.nix:

1 # shell.nix
2 (import ./.).shell

Complete example

Assume your build is defined in build.nix:

1 # build.nix
2 { cowsay, runCommand }:
3 runCommand "cowsay-output" { buildInputs = [cowsay]; } ''
4 cowsay Hello, Nix! > $out
5 ''

In this example, cowsay is declared as a build-time dependency using buildInputs.
Further assume your project is defined in default.nix:

1 # default.nix
2 let
3 nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
4 pkgs = import nixpkgs { config = {}; overlays = []; };
5 in
6 {
7 build = pkgs.callPackage ./build.nix {};
8 }

Add an attribute to default.nix specifying an environment:

let
nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
pkgs = import nixpkgs { config = {}; overlays = []; };

in
{

(continues on next page)
279 https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell-attributes

3.1. Recipes 137

https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell-attributes

nix.dev

(continued from previous page)
build = pkgs.callPackage ./build.nix {};

+ shell = pkgs.mkShellNoCC {
+ };
}

Move the build attribute into the let binding to be able to re-use it. Then take the package’s dependencies into
the environment with inputsFrom280:

let
nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11";
pkgs = import nixpkgs { config = {}; overlays = []; };

+ build = pkgs.callPackage ./build.nix {};
in
{

- build = pkgs.callPackage ./build.nix {};
+ inherit build;

shell = pkgs.mkShellNoCC {
+ inputsFrom = [build];

};
}

Finally, import the shell attribute in shell.nix:

1 # shell.nix
2 (import ./.).shell

Check the development environment, it contains the build-time dependency cowsay:

$ nix-shell --pure
[nix-shell]$ cowsay shell.nix

Next steps

• Towards reproducibility: pinning Nixpkgs (page 12)
• Automatic environment activation with direnv (page 136)
• Setting up a Python development environment (page 140)
• Packaging existing software with Nix (page 41)

3.1.4 Automatically managing remote sources with npins

The Nix language can be used to describe dependencies between files managed by Nix. Nix expressions themselves
can depend on remote sources, and there are multiple ways to specify their origin, as shown in Towards reproducibility:
pinning Nixpkgs (page 12).
For more automation around handling remote sources, set up npins281 in your project:

$ nix-shell -p npins --run "npins init --bare; npins add github nixos nixpkgs --
↪→branch nixos-23.11"

This command will fetch the latest revision of the Nixpkgs 23.11 release branch. In the current directory it will
generate npins/sources.json, which will contain a pinned reference to the obtained revision. It will also
create npins/default.nix, which exposes those dependencies as an attribute set.
Import the generated npins/default.nix as the default value for the argument to the function in default.
nix and use it to refer to the Nixpkgs source directory:
280 https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell-attributes
281 https://github.com/andir/npins/

138 Chapter 3. Guides

https://nixos.org/manual/nixpkgs/stable/#sec-pkgs-mkShell-attributes
https://github.com/andir/npins/

nix.dev

1 {
2 sources ? import ./npins,
3 system ? builtins.currentSystem,
4 pkgs ? import sources.nixpkgs { inherit system; config = {}; overlays = []; },
5 }:
6 {
7 package = pkgs.hello;
8 }

nix-build will call the top-level function with the empty attribute set {}, or with the attributes passed via
--arg282 or --argstr283. This pattern allows overriding remote sources (page 139) programmatically.
Add npins to the development environment for your project to have it readily available:

{
sources ? import ./npins,
system ? builtins.currentSystem,
pkgs ? import sources.nixpkgs { inherit system; config = {}; overlays = []; },

}:
-{
+rec {

package = pkgs.hello;
+ shell = pkgs.mkShellNoCC {
+ inputsFrom = [package];
+ packages = with pkgs; [
+ npins
+];
+ };
}

Also add a shell.nix to enter that environment more conveniently:

1 (import ./. {}).shell

SeeDependencies in the development shell (page 137) for details, and note that here you have to pass an empty attribute
set to the imported expression, since default.nix now contains a function.

Overriding sources

As an example, we will use the previously created expression with an older version of Nixpkgs.
Enter the development environment, create a new directory, and set up npins with a different version of Nixpkgs:

$ nix-shell
[nix-shell]$ mkdir old
[nix-shell]$ cd old
[nix-shell]$ npins init --bare
[nix-shell]$ npins add github nixos nixpkgs --branch nixos-21.11

Create a file default.nix in the new directory to import the original one with the sources you just created.

1 import ../default.nix { sources = import ./npins; }

This will result in a different version being built:

$ nix-build -A build
$./result/bin/hello --version | head -1
hello (GNU Hello) 2.10

282 https://nix.dev/manual/nix/stable/command-ref/nix-build#opt-arg
283 https://nix.dev/manual/nix/stable/command-ref/nix-build#opt-argstr

3.1. Recipes 139

https://nix.dev/manual/nix/stable/command-ref/nix-build#opt-arg
https://nix.dev/manual/nix/stable/command-ref/nix-build#opt-argstr

nix.dev

Sources can also be overridden on the command line:

nix-build .. -A build --arg sources 'import ./npins'

Migrating from niv

A previous version of this guide recommended using niv284, a similar pin manager written in Haskell.
If you have a project using niv, you can import remote source definitions into npins:

npins import-niv

Warning: All the imported entries will be updated, so they won’t necessarily point to the same commits as
before!

Next steps

• Check the built-in help for more information:

npins --help

• For more details and examples of the different ways to specify remote sources, see Towards reproducibility:
pinning Nixpkgs (page 12).

3.1.5 Setting up a Python development environment

In this example you will build a Python web application using the Flask285 web framework as an exercise. To make
the best use of it, you should be familiar with defining declarative shell environments (page 9).
Create a new file called myapp.py and add the following code:

#!/usr/bin/env python

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():

return {
"message": "Hello, Nix!"

}

def run():
app.run(host="0.0.0.0", port=5000)

if __name__ == "__main__":
run()

This is a simple Flask application which serves a JSON document with the message "Hello, Nix!".
Create a new file shell.nix to declare the development environment:

284 https://github.com/nmattia/niv/
285 https://flask.palletsprojects.com

140 Chapter 3. Guides

https://github.com/nmattia/niv/
https://flask.palletsprojects.com

nix.dev

{ pkgs ? import (fetchTarball "https://github.com/NixOS/nixpkgs/tarball/nixos-23.11
↪→") {} }:

pkgs.mkShellNoCC {
packages = with pkgs; [
(python3.withPackages (ps: [ps.flask]))
curl
jq

];
}

This describes a shell environment with an instance of python3 that includes the flask package using python3.
withPackages286. It also contains curl287, a utility to perform web requests, and jq288, a tool to parse and
format JSON documents.
Both of them are not Python packages. If you went with Python’s virtualenv289, it would not be possible to add these
utilities to the development environment without additional manual steps.
Run nix-shell to enter the environment you just declared:

$ nix-shell
these 2 derivations will be built:

/nix/store/5yvz7zf8yzck6r9z4f1br9sh71vqkimk-builder.pl.drv
/nix/store/aihgjkf856dbpjjqalgrdmxyyd8a5j2m-python3-3.9.13-env.drv

these 93 paths will be fetched (109.50 MiB download, 468.52 MiB unpacked):
/nix/store/0xxjx37fcy2nl3yz6igmv4mag2a7giq6-glibc-2.33-123
/nix/store/138azk9hs5a2yp3zzx6iy1vdwi9q26wv-hook

...

[nix-shell:~]$

Start the web application within this shell environment:

[nix-shell:~]$ python ./myapp.py
* Serving Flask app 'myapp'
* Debug mode: off

WARNING: This is a development server. Do not use it in a production deployment.␣
↪→Use a production WSGI server instead.
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:5000
* Running on http://192.168.1.100:5000

Press CTRL+C to quit

You now have a running Python web application. Try it out!
Open a new terminal to start another session of the shell environment and follow the commands below:

$ nix-shell

[nix-shell:~]$ curl 127.0.0.1:5000
{"message":"Hello, Nix!"}

[nix-shell:~]$ curl 127.0.0.1:5000 | jq '.message'
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 26 100 26 0 0 13785 0 --:--:-- --:--:-- --:--:-- 26000
"Hello, Nix!"

As demonstrated, you can use both curl and jq to test the running web application without any manual installation.
286 https://nixos.org/manual/nixpkgs/stable/#python.withpackages-function
287 https://search.nixos.org/packages?show=curl
288 https://search.nixos.org/packages?show=jq
289 https://virtualenv.pypa.io/en/latest/

3.1. Recipes 141

https://nixos.org/manual/nixpkgs/stable/#python.withpackages-function
https://nixos.org/manual/nixpkgs/stable/#python.withpackages-function
https://search.nixos.org/packages?show=curl
https://search.nixos.org/packages?show=jq
https://virtualenv.pypa.io/en/latest/

nix.dev

You can commit the files we created to version control and share them with other people. Others can now use the
same shell environment as long as they have Nix installed (page 1).

Next steps

• Packaging existing software with Nix (page 41)
• Working with local files (page 58)
• Automatic environment activation with direnv (page 136)
• Automatically managing remote sources with npins (page 138)

3.1.6 Setting up post-build hooks

This guide shows how to use the Nix post-build-hook290 configuration option to automatically upload build
results to an S3-compatible binary cache291.

Implementation caveats

This is a simple and working example, but it is not suitable for all use cases.
The post-build hook program runs after each executed build, and blocks the build loop. The build loop exits if the
hook program fails.
Concretely, this implementation will make Nix slow or unusable when the network connection is slow or unreliable.
A more advanced implementation might pass the store paths to a user-supplied daemon or queue for processing the
store paths outside of the build loop.

Prerequisites

This tutorial assumes you have configured an S3-compatible binary cache292, and that the root user’s default AWS
profile can upload to the bucket.

Set up a signing key

Use nix-store --generate-binary-cache-key293 to create a pair of cryptographic keys. You will sign
paths with the private key, and distribute the public key for verifying the authenticity of the paths.

$ nix-store --generate-binary-cache-key example-nix-cache-1 /etc/nix/key.private /
↪→etc/nix/key.public
$ cat /etc/nix/key.public
example-nix-cache-1:1/cKDz3QCCOmwcztD2eV6Coggp6rqc9DGjWv7C0G+rM=

Configure Nix to use a custom binary cache (page 135) on any machine that will access the bucket. For example, add
the cache URL to substituters294 and the public key to trusted-public-keys295 in nix.conf:

substituters = https://cache.nixos.org/ s3://example-nix-cache
trusted-public-keys = cache.nixos.org-
↪→1:6NCHdD59X431o0gWypbMrAURkbJ16ZPMQFGspcDShjY= example-nix-cache-1:1/
↪→cKDz3QCCOmwcztD2eV6Coggp6rqc9DGjWv7C0G+rM=

290 https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-post-build-hook
291 https://nix.dev/manual/nix/2.22/store/types/s3-binary-cache-store
292 https://nix.dev/manual/nix/2.22/store/types/s3-binary-cache-store#authenticated-writes-to-your-s3-compatible-binary-cache
293 https://nix.dev/manual/nix/2.22/command-ref/nix-store/generate-binary-cache-key
294 https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-substituters
295 https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-trusted-public-keys

142 Chapter 3. Guides

https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-post-build-hook
https://nix.dev/manual/nix/2.22/store/types/s3-binary-cache-store
https://nix.dev/manual/nix/2.22/store/types/s3-binary-cache-store#authenticated-writes-to-your-s3-compatible-binary-cache
https://nix.dev/manual/nix/2.22/command-ref/nix-store/generate-binary-cache-key
https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-substituters
https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-trusted-public-keys

nix.dev

Machines that build for the cache must sign derivations using the private key. The path to the file containing the
private key you just generated must be added to the secret-key-files296 setting for those machines:

secret-key-files = /etc/nix/key.private

Implementing the build hook

Write the following script to /etc/nix/upload-to-cache.sh:

#!/bin/sh
set -eu
set -f # disable globbing
export IFS=' '
echo "Uploading paths" $OUT_PATHS
exec nix copy --to "s3://example-nix-cache" $OUT_PATHS

The $OUT_PATHS variable is a space-separated list of Nix store paths. In this case, we expect and want the shell to
perform word splitting to make each output path its own argument to nix store sign. Nix guarantees the paths
will not contain any spaces, however a store path might contain glob characters. The set -f disables globbing in
the shell.
Make sure the hook program is executable by the root user:

chmod +x /etc/nix/upload-to-cache.sh

Updating Nix configuration

Set the post-build-hook297 configuration option on the local machine to run the hook:

post-build-hook = /etc/nix/upload-to-cache.sh

Then restart the nix-daemon on all involved machines, e.g. with

pkill nix-daemon

Testing

Build any derivation, for example:

$ nix-build -E '(import <nixpkgs> {}).writeText "example" (builtins.toString␣
↪→builtins.currentTime)'
this derivation will be built:

/nix/store/s4pnfbkalzy5qz57qs6yybna8wylkig6-example.drv
building '/nix/store/s4pnfbkalzy5qz57qs6yybna8wylkig6-example.drv'...
running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'.
↪→..
post-build-hook: Signing paths /nix/store/ibcyipq5gf91838ldx40mjsp0b8w9n18-example
post-build-hook: Uploading paths /nix/store/ibcyipq5gf91838ldx40mjsp0b8w9n18-
↪→example
/nix/store/ibcyipq5gf91838ldx40mjsp0b8w9n18-example

To check that the hook took effect, delete the path from the store, and try substituting it from the binary cache:

296 https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-secret-key-files
297 https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-post-build-hook

3.1. Recipes 143

https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-secret-key-files
https://nix.dev/manual/nix/2.22/command-ref/conf-file#conf-post-build-hook

nix.dev

$ rm ./result
$ nix-store --delete /nix/store/ibcyipq5gf91838ldx40mjsp0b8w9n18-example
$ nix-store --realise /nix/store/ibcyipq5gf91838ldx40mjsp0b8w9n18-example
copying path '/nix/store/m8bmqwrch6l3h8s0k3d673xpmipcdpsa-example from 's3://
↪→example-nix-cache'...
warning: you did not specify '--add-root'; the result might be removed by the␣
↪→garbage collector
/nix/store/m8bmqwrch6l3h8s0k3d673xpmipcdpsa-example

Conclusion

You have configured Nix to automatically sign and upload every local build to a remote S3-compatible binary cache.
Before deploying this to production, be sure to consider the implementation caveats (page 142).

3.1.7 Continuous integration with GitHub Actions

In this guide, we’ll show you a few short steps to get started using GitHub Actions298 as your continuous integration
(CI) workflow for commits and pull requests.
One benefit of Nix is thatCI can build and cache developer environments for every project on every branch using
binary caches.
An important aspect of CI is the feedback loop of, how many minutes does the build take to finish?
There are several good options, but Cachix (below) is the most straightforward.

Caching builds using Cachix

Using Cachix299 you’ll never have to waste time building a derivation twice, and you’ll share built derivations with all
your developers.
After each job, just-built derivations are pushed to your binary cache.
Before each job, derivations to be built are first substituted (if they exist) from your binary cache.

1. Creating your first binary cache

It’s recommended to have different binary caches per team, depending on who will have write/read access to it.
Fill out the form on the create binary cache300 page.
On your freshly created binary cache, follow the Push binaries tab instructions.
298 https://github.com/features/actions
299 https://cachix.org/
300 https://app.cachix.org/cache

144 Chapter 3. Guides

https://github.com/features/actions
https://cachix.org/
https://app.cachix.org/cache

nix.dev

2. Setting up secrets

On your GitHub repository or organization (for use across all repositories):
1. Click on Settings.
2. Click on Secrets.
3. Add your previously generated secrets (CACHIX_SIGNING_KEY and/or CACHIX_AUTH_TOKEN).

3. Setting up GitHub Actions

Create .github/workflows/test.yml with:

name: "Test"
on:

pull_request:
push:

jobs:
tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: cachix/install-nix-action@v25

with:
nix_path: nixpkgs=channel:nixos-unstable

- uses: cachix/cachix-action@v14
with:

name: mycache
If you chose signing key for write access
signingKey: '${{ secrets.CACHIX_SIGNING_KEY }}'
If you chose API tokens for write access OR if you have a private cache
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'

- run: nix-build
- run: nix-shell --run "echo OK"

Once you commit and push to your GitHub repository, you should see status checks appearing on commits and PRs.

Next steps

• See GitHub Actions workflow syntax301

• To quickly set up a Nix project read through Getting started Nix template302.

3.2 Best practices

3.2.1 URLs

TheNix language syntax supports bare URLs, so one could writehttps://example.com instead of"https:/
/example.com"

RFC 45303 was accepted to deprecate unquoted URLs and provides a number of arguments for how this feature does
more harm than good.
301 https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
302 https://github.com/nix-dot-dev/getting-started-nix-template
303 https://github.com/NixOS/rfcs/pull/45

3.2. Best practices 145

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://github.com/nix-dot-dev/getting-started-nix-template
https://github.com/NixOS/rfcs/pull/45

nix.dev

Tip: Always quote URLs.

3.2.2 Recursive attribute set rec { ... }

rec allows you to reference names within the same attribute set.
Example:

rec {
a = 1;
b = a + 2;

}

{ a = 1; b = 3; }

A common pitfall is to introduce a hard-to-debug error infinite recursion when shadowing a name. The
simplest example for this is:

let a = 1; in rec { a = a; }

Tip: Avoid rec. Use let ... in.
Example:

let
a = 1;

in {
a = a;
b = a + 2;

}

Tip: Self-reference can be achieved by explicitly naming the attribute set:

let
argset = {
a = 1;
b = argset.a + 2;

};
in

argset

3.2.3 with scopes

It’s still common to see the following expression in the wild:

with (import <nixpkgs> {});

... lots of code

This brings all attributes of the imported expression into scope of the current expression.
There are a number of problems with that approach:

• Static analysis can’t reason about the code, because it would have to actually evaluate this file to see which
names are in scope.

146 Chapter 3. Guides

nix.dev

• When more than one with is used, it’s not clear anymore where the names are coming from.
• Scoping rules for with are not intuitive, see this Nix issue for details304.

Tip: Do not use with at the top of a Nix file. Explicitly assign names in a let expression.
Example:

let
pkgs = import <nixpkgs> {};
inherit (pkgs) curl jq;

in

...

Smaller scopes are usually less problematic, but can still lead to surprises due to scoping rules.

Tip: If you want to avoid with altogether, try replacing expressions of this form

buildInputs = with pkgs; [curl jq];

with the following:

buildInputs = builtins.attrValues {
inherit (pkgs) curl jq;

};

3.2.4 <...> lookup paths

You will often encounter Nix language code samples that refer to <nixpkgs>.
<...> is special syntax that was introduced in 2011305 to conveniently access values from the environment variable
$NIX_PATH306.
This means the value of a lookup path depends on external system state. When using lookup paths, the same Nix
expression can produce different results.
In most cases, $NIX_PATH is set to the latest channel when Nix is installed, and is therefore likely to differ from
machine to machine.

Note: Channels307 are a mechanism for referencing remote Nix expressions and retrieving their latest version.

The state of a subscribed channel is external to the Nix expressions relying on it. It is not easily portable across
machines. This may limit reproducibility.
For example, two developers on different machines are likely to have <nixpkgs> point to different revisions of the
Nixpkgs repository. Builds may work for one and fail for the other, causing confusion.

Tip: Declare dependencies explicitly using the techniques shown in Towards reproducibility: pinning Nixpkgs
(page 12).
Do not use lookup paths, except in minimal examples.

304 https://github.com/NixOS/nix/issues/490
305 https://github.com/NixOS/nix/commit/1ecc97b6bdb27e56d832ca48cdafd3dbb5185a04
306 https://nix.dev/manual/nix/stable/command-ref/env-common.html#env-NIX_PATH
307 https://nix.dev/manual/nix/stable/command-ref/nix-channel.html

3.2. Best practices 147

https://github.com/NixOS/nix/issues/490
https://github.com/NixOS/nix/commit/1ecc97b6bdb27e56d832ca48cdafd3dbb5185a04
https://nix.dev/manual/nix/stable/command-ref/env-common.html#env-NIX_PATH
https://nix.dev/manual/nix/stable/command-ref/nix-channel.html

nix.dev

Some tools expect the lookup path to be set. In that case:

Tip: Set $NIX_PATH to a known value in a central location under version control.

NixOS
On NixOS, $NIX_PATH can be set permanently with the nix.nixPath308 option.

3.2.5 Reproducible Nixpkgs configuration

To quickly obtain packages for demonstration, we use the following concise pattern:

1 import <nixpkgs> {}

However, even when <nixpkgs> is replaced as shown in Towards reproducibility: pinning Nixpkgs (page 12), the
result may still not be fully reproducible. This is because for historical reasons the Nixpkgs top-level expression309
by default impurely reads from the file system to obtain configuration parameters. Systems that have the appropriate
files populated may end up with different results.
It is a well-known problem that cannot be resolved without breaking existing setups.

Tip: Explicitly set config310 and overlays311 when importing Nixpkgs:

1 import <nixpkgs> { config = {}; overlays = []; }

This is what we do in our tutorials to ensure that the examples will behave exactly as expected. We skip it in minimal
examples to reduce distractions.

3.2.6 Updating nested attribute sets

The attribute set update operator312 merges two attribute sets.
Example:

{ a = 1; b = 2; } // { b = 3; c = 4; }

{ a = 1; b = 3; c = 4; }

However, names on the right take precedence, and updates are shallow.
Example:

{ a = { b = 1; }; } // { a = { c = 3; }; }

{ a = { c = 3; }; }

Here, key b was completely removed, because the whole a value was replaced.

Tip: Use the pkgs.lib.recursiveUpdate313 Nixpkgs function:
308 https://search.nixos.org/options?show=nix.nixPath
309 https://github.com/NixOS/nixpkgs/blob/master/default.nix
310 https://nixos.org/manual/nixpkgs/stable/#chap-packageconfig
311 https://nixos.org/manual/nixpkgs/stable/#chap-overlays
312 https://nix.dev/manual/nix/stable/language/operators.html#update
313 https://nixos.org/manual/nixpkgs/stable/#function-library-lib.attrsets.recursiveUpdate

148 Chapter 3. Guides

https://search.nixos.org/options?show=nix.nixPath
https://github.com/NixOS/nixpkgs/blob/master/default.nix
https://nixos.org/manual/nixpkgs/stable/#chap-packageconfig
https://nixos.org/manual/nixpkgs/stable/#chap-overlays
https://nix.dev/manual/nix/stable/language/operators.html#update
https://nixos.org/manual/nixpkgs/stable/#function-library-lib.attrsets.recursiveUpdate

nix.dev

let pkgs = import <nixpkgs> {}; in
pkgs.lib.recursiveUpdate { a = { b = 1; }; } { a = { c = 3;}; }

{ a = { b = 1; c = 3; }; }

3.2.7 Reproducible source paths

let pkgs = import <nixpkgs> {}; in

pkgs.stdenv.mkDerivation {
name = "foo";
src = ./.;

}

If the Nix file containing this expression is in /home/myuser/myproject, then the store path of src will be
/nix/store/<hash>-myproject.
The problem is that now your build is no longer reproducible, as it depends on the parent directory name. That cannot
be declared in the source code, and results in an impurity.
If someone builds the project in a directory with a different name, they will get a different store path for src and
everything that depends on it. This can be the cause of needless rebuilds.

Tip: Use builtins.path314 with the name attribute set to something fixed.
This will derive the symbolic name of the store path from name instead of the working directory:

let pkgs = import <nixpkgs> {}; in

pkgs.stdenv.mkDerivation {
name = "foo";
src = builtins.path { path = ./.; name = "myproject"; };

}

3.3 Troubleshooting

This page is a collection of tips to solve problems you may encounter when using Nix.

3.3.1 What to do if a binary cache is down or unreachable?

Pass --option substitute false315 to Nix commands.
314 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-path
315 https://nix.dev/manual/nix/stable/command-ref/conf-file#conf-substitute

3.3. Troubleshooting 149

https://nix.dev/manual/nix/stable/language/builtins.html#builtins-path
https://nix.dev/manual/nix/stable/command-ref/conf-file#conf-substitute

nix.dev

3.3.2 How to force Nix to re-check if something exists in the binary cache?

Nix keeps track of what’s available in binary caches so it doesn’t have to query them on every command. This includes
negative answers, that is, if a given store path cannot be substituted.
Pass the --narinfo-cache-negative-ttl316 option to set the cache timeout in seconds.

3.3.3 How to fix: error: querying path in database: database disk
image is malformed

This is a known issue317. Try:

$ sqlite3 /nix/var/nix/db/db.sqlite "pragma integrity_check"

Which will print the errors in the database318. If the errors are due to missing references, the following may work:

$ mv /nix/var/nix/db/db.sqlite /nix/var/nix/db/db.sqlite-bkp
$ sqlite3 /nix/var/nix/db/db.sqlite-bkp ".dump" | sqlite3 /nix/var/nix/db/db.sqlite

3.3.4 How to fix: error: current Nix store schema is version 10, but
I only support 7

This is a known issue319.
It means that using a new version of Nix upgraded the SQLite schema of the database320, and then you tried to use
an older version of Nix.
The solution is to dump the database, and use the old Nix version to re-import the data:

$ /path/to/nix/unstable/bin/nix-store --dump-db > /tmp/db.dump
$ mv /nix/var/nix/db /nix/var/nix/db.toonew
$ mkdir /nix/var/nix/db
$ nix-store --load-db < /tmp/db.dump

3.3.5 How to fix: writing to file: Connection reset by peer

This may mean you are trying to import too large a file or directory into the Nix store321, or your machine is running
out of resources, such as disk space or memory.
Try to reduce the size of the directory to import, or run garbage collection322.
316 https://nix.dev/manual/nix/stable/command-ref/conf-file.html#conf-narinfo-cache-negative-ttl
317 https://github.com/NixOS/nix/issues/1353
318 https://nix.dev/manual/nix/stable/glossary#gloss-nix-database
319 https://github.com/NixOS/nix/issues/1251
320 https://nix.dev/manual/nix/stable/glossary#gloss-nix-database
321 https://nix.dev/manual/nix/stable/glossary#gloss-store
322 https://nix.dev/manual/nix/stable/command-ref/nix-collect-garbage

150 Chapter 3. Guides

https://nix.dev/manual/nix/stable/command-ref/conf-file.html#conf-narinfo-cache-negative-ttl
https://github.com/NixOS/nix/issues/1353
https://nix.dev/manual/nix/stable/glossary#gloss-nix-database
https://github.com/NixOS/nix/issues/1251
https://nix.dev/manual/nix/stable/glossary#gloss-nix-database
https://nix.dev/manual/nix/stable/glossary#gloss-store
https://nix.dev/manual/nix/stable/command-ref/nix-collect-garbage

nix.dev

3.3.6 macOS update breaks Nix installation

This is a known issue323. The Nix installer324 modifies /etc/zshrc. When macOS is updated, it will typically
overwrite /etc/zshrc again.
As a workaround, add the following code snippet to the end of /etc/zshrc and restart the shell:

if [-e '/nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh']; then
. '/nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh'

fi

3.4 Frequently Asked Questions

3.4.1 Nix

How to format Nix language code automatically?

nixfmt325 is the official formatter for Nix language code. Please refer to its source repository for installation in-
structions.
nixfmt is used to format all code326 in Nixpkgs.

How to convert between paths and strings in the Nix language?

See the Nix reference manual on string interpolation327 and operators on paths and strings328.

How to build reverse dependencies of a package?

$ nix-shell -p nixpkgs-review --run "nixpkgs-review wip"

How can I manage dotfiles in $HOME with Nix?

See https://github.com/nix-community/home-manager

What’s the recommended process for building custom packages?

Please read Packaging existing software with Nix (page 41).
323 https://github.com/NixOS/nix/issues/3616
324 https://nix.dev/manual/nix/latest/installation/installing-binary
325 https://github.com/NixOS/nixfmt
326 https://github.com/NixOS/nixpkgs/blob/master/ci/default.nix
327 https://nix.dev/manual/nix/2.19/language/string-interpolation
328 https://nix.dev/manual/nix/2.19/language/operators#string-concatenation

3.4. Frequently Asked Questions 151

https://github.com/NixOS/nix/issues/3616
https://nix.dev/manual/nix/latest/installation/installing-binary
https://github.com/NixOS/nixfmt
https://github.com/NixOS/nixpkgs/blob/master/ci/default.nix
https://nix.dev/manual/nix/2.19/language/string-interpolation
https://nix.dev/manual/nix/2.19/language/operators#string-concatenation
https://github.com/nix-community/home-manager

nix.dev

How to use a clone of the Nixpkgs repository to update or write new packages?

Please read Packaging existing software with Nix (page 41) and the Nixpkgs contributing guide329.

3.4.2 NixOS

How to run non-nix executables?

NixOS cannot run dynamically linked executables intended for generic Linux environments out of the box. This is
because, by design, it does not have a global library path, nor does it follow the Filesystem Hierarchy Standard330
(FHS).
There are a few ways to resolve this mismatch in environment expectations:

• Use the version packaged in Nixpkgs, if there is one. You can search available packages at https://search.nixos.
org/packages.

• Write a Nix expression for the program to package it in your own configuration.
There are multiple approaches to this:

– Build from source.
Many open-source programs are highly flexible at compile time in terms of where their files go. For an
introduction to this, see Packaging existing software with Nix (page 41).

– Modify the program’s ELF header331 to include paths to libraries using autoPatchelfHook332.
Do this if building from source isn’t feasible.

– Wrap the program to run in an FHS-like environment using buildFHSEnv333.
This is a last resort, but sometimes necessary, for example if the program downloads and runs other
executables.

• Create a library path that only applies to unpackaged programs by using nix-ld334. Add this to your
configuration.nix:

1 programs.nix-ld.enable = true;
2 programs.nix-ld.libraries = with pkgs; [
3 # Add any missing dynamic libraries for unpackaged programs
4 # here, NOT in environment.systemPackages
5];

Then run nixos-rebuild switch, and log out and back in again to propagate the new environment
variables. (This is only necessary when enablingnix-ld; changes in included libraries take effect immediately
on rebuild.)

Note: nix-ld does not work for 32-bit executables on x86_64 machines.

• Run your program in the FHS-like environment made for the Steam package using steam-run335:

$ nix-shell -p steam-run --run "steam-run <command>"

329 https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
330 https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
331 https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
332 https://nixos.org/manual/nixpkgs/stable/#setup-hook-autopatchelfhook
333 https://nixos.org/manual/nixpkgs/stable/#sec-fhs-environments
334 https://github.com/Mic92/nix-ld
335 https://nixos.org/manual/nixpkgs/stable/#sec-steam-run

152 Chapter 3. Guides

https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://search.nixos.org/packages
https://search.nixos.org/packages
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://nixos.org/manual/nixpkgs/stable/#setup-hook-autopatchelfhook
https://nixos.org/manual/nixpkgs/stable/#sec-fhs-environments
https://github.com/Mic92/nix-ld
https://nixos.org/manual/nixpkgs/stable/#sec-steam-run

nix.dev

How to build my own ISO?

See http://nixos.org/nixos/manual/index.html#sec-building-image

How do I connect to any of the machines in NixOS tests?

Apply the following patch:

diff --git a/nixos/lib/test-driver/test-driver.pl b/nixos/lib/test-driver/test-
↪→driver.pl
index 8ad0d67..838fbdd 100644
--- a/nixos/lib/test-driver/test-driver.pl
+++ b/nixos/lib/test-driver/test-driver.pl
@@ -34,7 +34,7 @@ foreach my $vlan (split / /, $ENV{VLANS} || "") {

if ($pid == 0) {
dup2(fileno($pty->slave), 0);
dup2(fileno($stdoutW), 1);

- exec "vde_switch -s $socket" or _exit(1);
+ exec "vde_switch -tap tap0 -s $socket" or _exit(1);

}
close $stdoutW;
print $pty "version\n";

And then the vde_switch network should be accessible locally.

How to bootstrap NixOS inside an existing Linux installation?

There are a couple of tools:
• https://github.com/nix-community/nixos-anywhere
• https://github.com/jeaye/nixos-in-place
• https://github.com/elitak/nixos-infect
• https://github.com/cleverca22/nix-tests/tree/master/kexec

3.4. Frequently Asked Questions 153

http://nixos.org/nixos/manual/index.html#sec-building-image
https://github.com/nix-community/nixos-anywhere
https://github.com/jeaye/nixos-in-place
https://github.com/elitak/nixos-infect
https://github.com/cleverca22/nix-tests/tree/master/kexec

nix.dev

154 Chapter 3. Guides

CHAPTER

FOUR

REFERENCE

These sections contain collections of detailed technical descriptions.

4.1 Glossary

Nix
Build system and package manager.
Read /nɪks/ (“Niks”).
See also:

• Nix reference manual (page 156)
• Nix source code336

Nix language
Programming language to declare packages and configurations for Nix.
See also:

• Nix language basics (page 13)
• Nix language reference337

Nix expression
Expression written in the Nix language.

Nix file
File (.nix) containing a Nix expression.

Nixpkgs
Software distribution built with Nix.
Read /nɪks ˈpækɪʤɪz/ (“Nix packages”).
See also:

• Nixpkgs reference manual338

• Nixpkgs source code339

NixOS
Linux distribution based on Nix and Nixpkgs.
Read /nɪks oʊ ɛs/ (“Niks Oh Es”).
See also:

336 https://github.com/NixOS/nix
337 https://nix.dev/manual/nix/stable/language
338 https://nixos.org/manual/nixpkgs
339 https://github.com/NixOS/nixpkgs

155

https://github.com/NixOS/nix
https://nix.dev/manual/nix/stable/language
https://nixos.org/manual/nixpkgs
https://github.com/NixOS/nixpkgs

nix.dev

• NixOS reference manual340

• NixOS source code341

4.2 Nix reference manual

The Nix reference manual is available for multiple versions:
• Nix pre-release342

Development build from the master branch of the Nix repository343

• Nix 2.31344 (single page345)
Latest Nix release

• Nix 2.28346 (single page347)
Shipped with the rolling release of Nixpkgs and NixOS

• Nix 2.28348 (single page349)
Shipped with the current stable release of Nixpkgs and NixOS: 25.05

• Nix 2.24350 (single page351)
Shipped with the previous stable release of Nixpkgs and NixOS: 24.11

Tip: More information on Nixpkgs and NixOS releases: Which channel branch should I use? (page 164)

4.3 Further reading

4.3.1 Nix language tutorials

• Nix language one-pager reference352 (Vincent Ambo, 2019-2021)
Overview of common language features and widely used idioms.

• A tour of Nix353 (Joachim Schiele, 2015-2022)
Interactive exercises with the Nix language.

• Video: Nix language overview354 (Wil Taylor, 2021)
Overview of language features.

340 https://nixos.org/manual/nixos
341 https://github.com/NixOS/nixpkgs/tree/master/nixos
342 https://nix.dev/manual/nix/development/
343 https://github.com/NixOS/nix
344 https://nix.dev/manual/nix/latest/
345 https://nix.dev/manual/nix/latest/nix-2.31.html
346 https://nix.dev/manual/nix/rolling/
347 https://nix.dev/manual/nix/rolling/nix-2.28.html
348 https://nix.dev/manual/nix/stable/
349 https://nix.dev/manual/nix/stable/nix-2.28.html
350 https://nix.dev/manual/nix/prev-stable/
351 https://nix.dev/manual/nix/prev-stable/nix-2.24.html
352 https://github.com/tazjin/nix-1p
353 https://nixcloud.io/tour
354 https://www.youtube.com/watch?v=eCapIx9heBw&list=PL-saUBvIJzOkjAw_vOac75v-x6EzNzZq-&index=5

156 Chapter 4. Reference

https://nixos.org/manual/nixos
https://github.com/NixOS/nixpkgs/tree/master/nixos
https://nix.dev/manual/nix/development/
https://github.com/NixOS/nix
https://nix.dev/manual/nix/latest/
https://nix.dev/manual/nix/latest/nix-2.31.html
https://nix.dev/manual/nix/rolling/
https://nix.dev/manual/nix/rolling/nix-2.28.html
https://nix.dev/manual/nix/stable/
https://nix.dev/manual/nix/stable/nix-2.28.html
https://nix.dev/manual/nix/prev-stable/
https://nix.dev/manual/nix/prev-stable/nix-2.24.html
https://github.com/tazjin/nix-1p
https://nixcloud.io/tour
https://www.youtube.com/watch?v=eCapIx9heBw&list=PL-saUBvIJzOkjAw_vOac75v-x6EzNzZq-&index=5

nix.dev

• Video: Reading the Nix language355 (Jonas Chevalier, 2019)
Introduction to reading Nix language code.

• Video: How and Why it Works356 (Graham Christensen, 2019)
Introduction to writing derivations.

4.3.2 Other articles

• Nix Pills357

A low-level tutorial on building software packages with Nix, showing in detail how Nixpkgs is constructed.
• Customizing packages in Nix358 (2022)
An overview of different methods to customize Nix packages.

• Manage your dot files with Home Manager359 (Mattia Gheda, 2021)
A tutorial for getting started with Home Manager.

• Nix Shorts360

A series of posts on the basics of how packaging with Nix works.
• NixOS and Flakes - An unofficial book for beginners361 (2023)
This tutorial is an introduction to NixOS using the experimental Nix Flakes (page 161) functionality.

4.3.3 Other videos

• Nixology362 (Burke Libbey, 2020)
Video series introducing fundamental Nix concepts.

• The Nix Hour363 (Silvan Mosberger, since 2022)
Weekly series exploring topics and answering questions from all around the Nix ecosystem.

• Nixpkgs364 (Jon Ringer, 2020-22)
Video series with tutorials on various activities around Nixpkgs.

• NixOS365 (Wil Taylor, 2021)
Series of tutorials on getting started with NixOS.

• NixOS Foundation on YouTube366

The official NixOS Foundation channel.
• NixCon on YouTube367

Recordings of NixCon talks and discussions.
355 https://youtu.be/hbJkMl631FE?t=1533
356 https://youtu.be/hbJkMl631FE?t=4806
357 https://nixos.org/nixos/nix-pills/index.html
358 https://bobvanderlinden.me/customizing-packages-in-nix/
359 https://ghedam.at/24353/tutorial-getting-started-with-home-manager-for-nix
360 https://github.com/justinwoo/nix-shorts
361 https://nixos-and-flakes.thiscute.world
362 https://www.youtube.com/playlist?list=PLRGI9KQ3_HP_OFRG6R-p4iFgMSK1t5BHs
363 https://www.youtube.com/playlist?list=PLyzwHTVJlRc8yjlx4VR4LU5A5O44og9in
364 https://www.youtube.com/@jonringer117/videos
365 https://www.youtube.com/playlist?list=PL-saUBvIJzOkjAw_vOac75v-x6EzNzZq-
366 https://www.youtube.com/@NixOS-Foundation/playlists
367 https://www.youtube.com/@NixCon

4.3. Further reading 157

https://youtu.be/hbJkMl631FE?t=1533
https://youtu.be/hbJkMl631FE?t=4806
https://nixos.org/nixos/nix-pills/index.html
https://bobvanderlinden.me/customizing-packages-in-nix/
https://ghedam.at/24353/tutorial-getting-started-with-home-manager-for-nix
https://github.com/justinwoo/nix-shorts
https://nixos-and-flakes.thiscute.world
https://www.youtube.com/playlist?list=PLRGI9KQ3_HP_OFRG6R-p4iFgMSK1t5BHs
https://www.youtube.com/playlist?list=PLyzwHTVJlRc8yjlx4VR4LU5A5O44og9in
https://www.youtube.com/@jonringer117/videos
https://www.youtube.com/playlist?list=PL-saUBvIJzOkjAw_vOac75v-x6EzNzZq-
https://www.youtube.com/@NixOS-Foundation/playlists
https://www.youtube.com/@NixCon

nix.dev

4.4 Pinning Nixpkgs

Specifying remote Nix expressions, such as the one provided by Nixpkgs, can be done in several ways:
• $NIX_PATH environment variable368

• -I option369 to most commands like nix-build, nix-shell, etc.
• fetchurl370, fetchTarball371, fetchGit372 or Nixpkgs fetchers373 in Nix expressions

4.4.1 Possible URL values

• Local file path:

./path/to/expression.nix

Using ./. means that the expression is located in a file default.nix in the current directory.
• Pinned to a specific commit:

https://github.com/NixOS/nixpkgs/archive/
↪→eabc38219184cc3e04a974fe31857d8e0eac098d.tar.gz

• Using the latest channel version, meaning all tests have passed:

http://nixos.org/channels/nixos-22.11/nixexprs.tar.xz

• Shorthand syntax for channels:

channel:nixos-22.11

• Using the latest channel version, hosted by GitHub:

https://github.com/NixOS/nixpkgs/archive/nixos-22.11.tar.gz

• Using the latest commit on the release branch, but not tested yet:

https://github.com/NixOS/nixpkgs/archive/release-21.11.tar.gz

4.4.2 Examples

• $ nix-build -I ~/dev

• $ nix-build -I nixpkgs=http://nixos.org/channels/nixos-22.11/nixexprs.tar.xz

• $ nix-build -I nixpkgs=channel:nixos-22.11

• $ NIX_PATH=nixpkgs=http://nixos.org/channels/nixos-22.11/nixexprs.tar.xz nix-
↪→build

• $ NIX_PATH=nixpkgs=channel:nixos-22.11 nix-build

368 https://nix.dev/manual/nix/stable/command-ref/env-common.html#env-NIX_PATH
369 https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I
370 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchurl
371 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchTarball
372 https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchGit
373 https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers

158 Chapter 4. Reference

https://nix.dev/manual/nix/stable/command-ref/env-common.html#env-NIX_PATH
https://nix.dev/manual/nix/stable/command-ref/opt-common.html#opt-I
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchurl
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchTarball
https://nix.dev/manual/nix/stable/language/builtins.html#builtins-fetchGit
https://nixos.org/manual/nixpkgs/stable/#chap-pkgs-fetchers

nix.dev

• In the Nix language:

1 let
2 pkgs = import (fetchTarball "https://github.com/NixOS/nixpkgs/archive/nixos-

↪→22.11.tar.gz") {};
3 in pkgs.stdenv.mkDerivation { ... }

4.4.3 Finding specific commits and releases

status.nixos.org374 provides:
• Latest tested commits for each release - use when pinning to specific commits
• List of active release channels - use when tracking latest channel versions

The complete list of channels is available at nixos.org/channels375.

Tip: More information on Nixpkgs and NixOS releases: Which channel branch should I use? (page 164)

374 https://status.nixos.org/
375 https://nixos.org/channels

4.4. Pinning Nixpkgs 159

https://status.nixos.org/
https://nixos.org/channels

nix.dev

160 Chapter 4. Reference

CHAPTER

FIVE

CONCEPTS

These sections contain explanations of history and ideas in the Nix ecosystem.

5.1 Flakes

What is usually referred to as “flakes” is:
• A policy for managing dependencies between Nix expressions.
• An experimental feature376 in Nix, implementing that policy and supporting functionality.

5.1.1 What are flakes?

Technically, a flake377 is a file system tree that contains a file named flake.nix in its root directory.
Flakes add the following behavior to Nix:

1. A flake.nix file enforces a schema378, where:
• Other flakes are referenced as dependencies providing Nix language code or other files.
• The values produced by the Nix expressions in flake.nix are structured according to pre-defined use
cases.

2. References to other flakes can be specified using a dedicated URL-like syntax379. A flake registry380 allows
using symbolic identifiers for further brevity. References can be automatically locked to their current specific
version and later updated programmatically.

3. A new command line interface381, implemented as a separate experimental feature, leverages flakes by accept-
ing flake references in order to build, run, or deploy software defined as a flake.

Nix handles flakes differently than regular Nix files in the following ways:
• The flake.nix file is checked for schema validity.
In particular, the metadata fields cannot be arbitrary Nix expressions. This is to prevent complex, possibly
non-terminating computations while querying the metadata.

• The entire flake directory is copied to Nix store before evaluation.
This allows for effective evaluation caching, which is relevant for large expressions such as Nixpkgs, but also
requires copying the entire flake directory again on each change.

376 https://nix.dev/manual/nix/stable/contributing/experimental-features
377 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#description
378 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#flake-format
379 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#flake-references
380 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-registry.html
381 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix.html

161

https://nix.dev/manual/nix/stable/contributing/experimental-features
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#description
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#flake-format
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#flake-references
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-registry.html
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix.html

nix.dev

• No external variables, parameters, or impure language values are allowed.
It means full reproducibility of a Nix expression, and, by extension, the resulting build instructions by default,
but also prohibits parametrisation of results by consumers.

5.1.2 Why are flakes controversial?

Flakes (page 161) were inspired by Shea Levy’s NixCon 2018 talk382, formally proposed in RFC 49383, and have
been in development since 2019. Nix introduced the implementation as its first experimental feature384 in 2021.
The subject is considered controversial among Nix users and developers in terms of design, implementation quality,
and decision-making process. In particular:

• The RFC was closed without conclusion, and some fundamental issues are not yet resolved. For example:
– The notion of a global flake registry385 saw substantial criticism386 that was never addressed. While
the source references of registry entries can be pinned387, local registry names in Nix expressions intro-
duce mutable system state388 and are thus, in that regard, no improvement over channels as managed by
nix-channel389.

– It is impossible to parametrise flakes390. This means that flakes downgrade ease of use of the system
parameter391 of derivations, for producers and consumers.

– the flakes proposal was criticised for trying to solve too many problems at once392 and at the wrong
abstraction layer393. Part of this is that the new command line interface and flakes are closely tied to each
other394.

• As predicted by RFC reviewers395, the original implementation introduced regressions396 in the Nix 2.4 re-
lease397, breaking some stable functionality without a major version398 increment.

• Copying sources to the Nix store prior to evaluation adds a significant performance penalty399, especially for
large repositories such as Nixpkgs. Work to address this has been in progress since May 2022400, but risks
introducing its own set of issues401.

• New Nix users were and still are encouraged by various individuals to adopt flakes despite there being no
stability guarantees and no timeline to conclude the experiment.

This led to a situation where the stable interface was only sparsely maintained for multiple years, and repeatedly suf-
fered breakages due to ongoing development. Meanwhile, the new interface was adopted widely enough for evolving
its design without negatively affecting users to become very challenging.
As of the 2023402 survey, 84% of the respondents rely on experimental features. Nixpkgs as a contrasting example,
while featuring a flake.nix for compatibility, does not depend on Nix experimental features in its code base.
382 https://www.youtube.com/watch?v=DHOLjsyXPtM
383 https://github.com/NixOS/rfcs/pull/49
384 https://nix.dev/manual/nix/stable/contributing/experimental-features
385 https://github.com/NixOS/flake-registry
386 https://github.com/NixOS/rfcs/pull/49#issuecomment-635635333
387 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-registry-pin
388 https://github.com/NixOS/nix/issues/7422
389 https://nix.dev/manual/nix/stable/command-ref/nix-channel
390 https://github.com/NixOS/nix/issues/2861
391 https://github.com/NixOS/nix/issues/3843
392 https://github.com/nixos/rfcs/pull/49#issuecomment-521998933
393 https://discourse.nixos.org/t/nixpkgs-cli-working-group-member-search/30517
394 https://discourse.nixos.org/t/2023-03-06-nix-team-meeting-minutes-38/26056#cli-stabilisation-announcement-draft-4
395 https://github.com/NixOS/rfcs/pull/49#issuecomment-588990425
396 https://discourse.nixos.org/t/nix-2-4-and-what-s-next/16257
397 https://nix.dev/manual/nix/stable/release-notes/rl-2.4.html
398 https://semver.org/
399 https://github.com/NixOS/nix/issues/3121
400 https://github.com/NixOS/nix/pull/6530
401 https://github.com/NixOS/nix/pull/6530#issuecomment-1850565931
402 https://discourse.nixos.org/t/nix-community-survey-2023-results/33124

162 Chapter 5. Concepts

https://www.youtube.com/watch?v=DHOLjsyXPtM
https://github.com/NixOS/rfcs/pull/49
https://nix.dev/manual/nix/stable/contributing/experimental-features
https://github.com/NixOS/flake-registry
https://github.com/NixOS/rfcs/pull/49#issuecomment-635635333
https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-registry-pin
https://github.com/NixOS/nix/issues/7422
https://github.com/NixOS/nix/issues/7422
https://nix.dev/manual/nix/stable/command-ref/nix-channel
https://github.com/NixOS/nix/issues/2861
https://github.com/NixOS/nix/issues/3843
https://github.com/NixOS/nix/issues/3843
https://github.com/nixos/rfcs/pull/49#issuecomment-521998933
https://discourse.nixos.org/t/nixpkgs-cli-working-group-member-search/30517
https://discourse.nixos.org/t/nixpkgs-cli-working-group-member-search/30517
https://discourse.nixos.org/t/2023-03-06-nix-team-meeting-minutes-38/26056#cli-stabilisation-announcement-draft-4
https://discourse.nixos.org/t/2023-03-06-nix-team-meeting-minutes-38/26056#cli-stabilisation-announcement-draft-4
https://github.com/NixOS/rfcs/pull/49#issuecomment-588990425
https://discourse.nixos.org/t/nix-2-4-and-what-s-next/16257
https://nix.dev/manual/nix/stable/release-notes/rl-2.4.html
https://nix.dev/manual/nix/stable/release-notes/rl-2.4.html
https://semver.org/
https://github.com/NixOS/nix/issues/3121
https://github.com/NixOS/nix/pull/6530
https://github.com/NixOS/nix/pull/6530#issuecomment-1850565931
https://discourse.nixos.org/t/nix-community-survey-2023-results/33124

nix.dev

5.1.3 Should I use flakes in my project?

You have to judge for yourself based on your needs.
Flakes (page 161) emphasize reproducible artifacts and convenience for their consumers, while classic Nix tools
center around composable building blocks and customisation options for developers. Both paradigms have their own
set of unique concepts and support tooling that have to be learned, with varying ease of use, implementation quality,
and support status. At the moment, neither the stable nor the experimental interface is clearly superior to the other
in all aspects.
Flakes and the nix command suite bring multiple improvements that are relevant for both software users and package
authors:

• The new command-line interface, together with flakes, makes dealing with existing packages significantly more
convenient in many cases.

• The constraints imposed on flakes strengthen reproducibility by default, and enable some performance im-
provements when interacting with a large Nix package repository like Nixpkgs.

• Flake references allow for easier handling of version upgrades for existing packages or project dependencies.
• The flake schema403 helps with composing Nix projects from multiple sources in an orderly fashion.

At the same time, flakes have fundamental architectural issues (page 162) and a number of problems with the imple-
mentation404, and there is no coordinated effort to resolve them systematically. There are also still many open design
questions around the nix command line interface405, some of which are currently being worked on.
While flakes reduce complexity in some regards, they also introduce some complexity with additional mechanisms.
You will have to learn more about the system to fully understand how it works.
Other than that, and below the surface of the flake schema, Nix and the Nix language work exactly the same in both
cases. In principle, the same level of reproducibility can be achieved with or without flakes. In particular, the process
of adding software to Nixpkgs or maintaining NixOS modules and configurations is not affected by flakes at all. There
is also no evidence that flakes could help solve the scalability challenges of either.
Finally, there are downsides to relying on experimental features406 in general:

• Interfaces and behavior of experimental features could still be changed by Nix developers. This may require
you to adapt your code at some point in the future, which will be more effort when it has grown in complexity.
Currently there is no concrete timeline for stabilising flakes.407 In contrast, stable features in Nix can be
considered stable indefinitely.

• The Nix maintainer team408 focuses on fixing bugs and regressions in stable interfaces, supporting well-
understood use cases, as well as improving the internal design and overall contributor experience in order
to ease future development. Improvements to experimental features have low priority.

• The Nix documentation team409 focuses on improving documentation and learning materials for stable features
and common principles. When using flakes, you will have to rely more heavily on user-to-user support, third-
party documentation, and the source code.

403 https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#flake-format
404 https://github.com/NixOS/nix/issues?q=is%3Aissue+is%3Aopen+label%3Aflakes+sort%3Areactions-%2B1-desc
405 https://github.com/NixOS/nix/issues?q=is%3Aissue+is%3Aopen+label%3Anew-cli+sort%3Areactions-%2B1-desc
406 https://nix.dev/manual/nix/stable/contributing/experimental-features
407 https://discourse.nixos.org/t/stabilising-the-new-nix-command-line-interface/35531#p-123372-how-does-this-relate-to-flakes-3
408 https://nixos.org/community/teams/nix.html
409 https://nixos.org/community/teams/documentation.html

5.1. Flakes 163

https://nix.dev/manual/nix/stable/command-ref/new-cli/nix3-flake.html#flake-format
https://github.com/NixOS/nix/issues?q=is%3Aissue+is%3Aopen+label%3Aflakes+sort%3Areactions-%2B1-desc
https://github.com/NixOS/nix/issues?q=is%3Aissue+is%3Aopen+label%3Aflakes+sort%3Areactions-%2B1-desc
https://github.com/NixOS/nix/issues?q=is%3Aissue+is%3Aopen+label%3Anew-cli+sort%3Areactions-%2B1-desc
https://github.com/NixOS/nix/issues?q=is%3Aissue+is%3Aopen+label%3Anew-cli+sort%3Areactions-%2B1-desc
https://nix.dev/manual/nix/stable/contributing/experimental-features
https://discourse.nixos.org/t/stabilising-the-new-nix-command-line-interface/35531#p-123372-how-does-this-relate-to-flakes-3
https://nixos.org/community/teams/nix.html
https://nixos.org/community/teams/documentation.html

nix.dev

5.1.4 Further reading

• Flakes aren’t real and cannot hurt you: a guide to using Nix flakes the non-flake way410 (Jade Lovelace, January
2024)

• Nix Flakes is an experiment that did too much at once…411 (comments412) (Samuel Dionne-Riel, September
2023)

• Experimental does not mean unstable413 (comments414) (Graham Christensen, September 2023)
• The Nix Hour: comparing flakes to traditional Nix415 (Silvan Mosberger, November 2022)

5.2 Frequently Asked Questions

5.2.1 What is the origin of the name Nix?

The name Nix is derived from the Dutch word niks, meaning nothing; build actions do not see anything
that has not been explicitly declared as an input.
— Nix: A Safe and Policy-Free System for Software Deployment416, LISA XVIII, 2004

The Nix logo is inspired by an idea for the Haskell logo417 and the fact that nix is Latin for snow418.

5.2.2 What are flakes?

See Flakes (page 161).

5.2.3 Which channel branch should I use?

Nixpkgs and NixOS have both stable and rolling releases.
These releases are distributed in variants called “channel branches”: Git branches used for releases, which are also
converted to Nix channels.

Tip: Consult the nix-channel419 entry in the Nix Reference Manual for more information on channels, and the
Nixpkgs contributing guide420 on the Nixpkgs branching strategy.

410 https://jade.fyi/blog/flakes-arent-real/
411 https://samuel.dionne-riel.com/blog/2023/09/06/flakes-is-an-experiment-that-did-too-much-at-once.html
412 https://discourse.nixos.org/t/nix-flakes-is-an-experiment-that-did-too-much-at-once/32707
413 https://determinate.systems/posts/experimental-does-not-mean-unstable
414 https://discourse.nixos.org/t/experimental-does-not-mean-unstable-detsyss-perspective-on-nix-flakes/32703
415 https://www.youtube.com/watch?v=atmoYyBAhF4
416 https://edolstra.github.io/pubs/nspfssd-lisa2004-final.pdf
417 https://wiki.haskell.org/File:Sgf-logo-blue.png
418 https://nix-dev.science.uu.narkive.com/VDaaP1BY/nix-logo
419 https://nix.dev/manual/nix/2.22/command-ref/nix-channel
420 https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md#branch-conventions

164 Chapter 5. Concepts

https://jade.fyi/blog/flakes-arent-real/
https://samuel.dionne-riel.com/blog/2023/09/06/flakes-is-an-experiment-that-did-too-much-at-once.html
https://discourse.nixos.org/t/nix-flakes-is-an-experiment-that-did-too-much-at-once/32707
https://determinate.systems/posts/experimental-does-not-mean-unstable
https://discourse.nixos.org/t/experimental-does-not-mean-unstable-detsyss-perspective-on-nix-flakes/32703
https://www.youtube.com/watch?v=atmoYyBAhF4
https://edolstra.github.io/pubs/nspfssd-lisa2004-final.pdf
https://wiki.haskell.org/File:Sgf-logo-blue.png
https://nix-dev.science.uu.narkive.com/VDaaP1BY/nix-logo
https://nix.dev/manual/nix/2.22/command-ref/nix-channel
https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md#branch-conventions

nix.dev

Stable

Stable releases receive conservative updates to fix bugs or security vulnerabilities; otherwise package versions are not
changed. A new stable release is made every six months.

• On Linux (including NixOS and WSL), use nixos-*421.
These branches point to commits where most Linux packages got pre-built and can be fetched from the binary
cache. Furthermore, these commits passed the full NixOS test suite.

• On macOS/Darwin, use nixpkgs-*-darwin422

These branches point to commits where most Darwin packages got pre-built and can be fetched from the binary
cache.

• On any other platform it doesn’t matter which one of the above is used.
Hydra doesn’t pre-build any binaries for other platforms.

All of these “channel branches” follow the corresponding release-*423 branch.

Example
nixos-23.05 and nixpkgs-23.05-darwin are both based on release-23.05.

Rolling

Rolling releases follow master424, the main development branch.
• On Linux (including NixOS and WSL), use nixos-unstable425.
• On any other platform, use nixpkgs-unstable426.

*-small427 channel branches have passed a smaller test suite, which means they are more up-to-date with respect
to their base branch, but offer fewer stability guarantees.

5.2.4 Are there any impurities left in sandboxed builds?

Yes. There is:
• CPU architecture—great effort is being made to avoid compilation of native instructions in favour of hardcoded
supported ones.

• System’s current time/date.
• The filesystem used for building (see also TMPDIR428).
• Linux kernel parameters, such as:

– IPv6 capabilities429.
– binfmt interpreters, e.g., those configured with boot.binfmt.emulatedSystems430.

• Timing behaviour of the build system—a parallel Make build may not get the correct inputs in some cases.
421 https://github.com/NixOS/nixpkgs/branches/all?query=nixos-
422 https://github.com/NixOS/nixpkgs/branches/all?query=nixpkgs-
423 https://github.com/NixOS/nixpkgs/branches/all?query=release-
424 https://github.com/NixOS/nixpkgs/branches/all?query=master
425 https://github.com/NixOS/nixpkgs/branches/all?query=nixos-unstable
426 https://github.com/NixOS/nixpkgs/branches/all?query=nixpkgs-unstable
427 https://github.com/NixOS/nixpkgs/branches/all?query=-small
428 https://nix.dev/manual/nix/stable/command-ref/env-common.html#env-TMPDIR
429 https://github.com/NixOS/nix/issues/5615
430 https://search.nixos.org/options?show=boot.binfmt.emulatedSystems

5.2. Frequently Asked Questions 165

https://github.com/NixOS/nixpkgs/branches/all?query=nixos-
https://github.com/NixOS/nixpkgs/branches/all?query=nixpkgs-
https://github.com/NixOS/nixpkgs/branches/all?query=release-
https://github.com/NixOS/nixpkgs/branches/all?query=master
https://github.com/NixOS/nixpkgs/branches/all?query=nixos-unstable
https://github.com/NixOS/nixpkgs/branches/all?query=nixpkgs-unstable
https://github.com/NixOS/nixpkgs/branches/all?query=-small
https://nix.dev/manual/nix/stable/command-ref/env-common.html#env-TMPDIR
https://github.com/NixOS/nix/issues/5615
https://search.nixos.org/options?show=boot.binfmt.emulatedSystems

nix.dev

• Insertion of random values, e.g., from /dev/random or /dev/urandom.
• Differences betweenNix versions. For instance, a newNix versionmight introduce a new environment variable.
A statement like env > $out is not promised by Nix to result in the same output, going into the future.

166 Chapter 5. Concepts

CHAPTER

SIX

CONTRIBUTING

6.1 How to contribute

The Nix ecosystem is developed by many volunteers and a few paid developers, maintaining one of the largest open
source software distributions in the world. Keeping it working and up to date – and improving it continuously – would
not be possible without your support!
This guide shows how you can contribute toNix, Nixpkgs orNixOS. It assumes that you’re already somewhat proficient
with basic concepts and workflows, which are outlined in the beginner tutorial series (page 3). The most important
aspects are the Nix language (page 13), the various Nixpkgs mechanisms for constructing derivations to build software
(page 41), the module system (page 73), and NixOS integration tests (page 107).

Important: If you cannot contribute time, consider donating to the NixOS Foundation on Open Collective431.
Currently the focus is on funding in-person events432 to share knowledge and grow the community of developers
proficient with Nix. With enough budget, it would be possible to pay for ongoing maintenance and development of
critical infrastructure and code – demanding work that we cannot expect to be done by volunteers indefinitely.

6.1.1 Getting started

Start by asking informed questions, after reading reference documentation (page 155) and the code relevant to what
you care about.
Join our community communication platforms433 to get in contact with other users and developers. Check out and
consider participating in our community teams434 if you’re interested in a particular topic.
All the source code and documentation is on GitHub435, and you need a GitHub account to propose changes. Tech-
nical discussions happen in issue and pull request comments.

Tip: If you are new to Nix, consider contributing documentation (page 171) first.
This is where we need the most help and where it is the easiest to begin.
Documentation and contribution guides are often incomplete or outdated, much as wewould like them to be otherwise.
We’re working on it. You can help and improve the situation for everyone by immediately solving problems with the
contribution workflow as you encounter them. This may slow you down with addressing your original concern. But
it will make it a lot easier for anyone to make meaningful contributions in the future. And it will lead to better code
and documentation in the long run.

431 https://opencollective.com/nixos
432 https://github.com/NixOS/foundation/issues?q=is%3Aissue%20label%3Afunding-request%20
433 https://nixos.org/community
434 https://nixos.org/community/#governance-teams
435 https://github.com/NixOS

167

https://opencollective.com/nixos
https://github.com/NixOS/foundation/issues?q=is%3Aissue%20label%3Afunding-request%20
https://nixos.org/community
https://nixos.org/community/#governance-teams
https://github.com/NixOS

nix.dev

6.1.2 Report an issue

Note: For asking general questions about the code or how to do things, please use our community communication
platforms436

To state technical problems and propose solutions, open GitHub issues and close them when the problem is resolved
or invalidated.

We can only fix issues that we know of, so please report any issue you encounter.
• Report issues with Nix (including the Nix reference manual437) at https://github.com/NixOS/nix/issues.
• Report issues with Nixpkgs or NixOS (including packages, configuration modules, the Nixpkgs manual438, and
the NixOS manual439) at https://github.com/NixOS/nixpkgs/issues.

Make sure that there is not already an open issue for your problem. Please follow the issue template and fill in all
requested information.
Take particular care to provide a minimal, easy-to-understand example to reproduce the problem you are facing. You
should also show what you have found in attempts to solve the problem yourself. This makes it much more likely for
the issue to be resolved eventually, and is important for multiple reasons:

• A reproducible sample is concise and unambiguous.
This helps with triaging issues, understanding the problem, finding the root cause, and developing a solution.
Your preliminary research further helps maintainers with analysis.

• It allows anyone to determine if the issue is still relevant.
Issues can remain unaddressed for a long time. Deciding what to do with them, even after months or years
have passed, requires checking if the underlying problem persists or was resolved. This has to be easy to do:
then anyone can help out with triaging, and notify maintainers to close or re-prioritise issues.

• The sample can be used for a regression test when solving the problem.

Tip: Ideally you would also propose or sketch a solution. The perfect issue is, in fact, a pull request that solves the
problem directly and ensures with tests that it cannot occur again.

Important: Please open issues to request new features (such as packages, modules, commands, …) only if you are
willing and able to implement them yourself. Then the issue can be used to gauge user interest, to determine if the
feature fits into the project, and to discuss implementation strategies.

6.1.3 Contribute to Nix

Nix is the cornerstone of the ecosystem, and is mostly written in C++.
If you want to help with development, check the contributing guide in the Nix repository on GitHub440.
436 https://nixos.org/community
437 https://nix.dev/manual/nix/stable
438 https://nixos.org/manual/nixpkgs/stable
439 https://nixos.org/manual/nixos/stable
440 https://github.com/NixOS/nix/blob/master/CONTRIBUTING.md

168 Chapter 6. Contributing

https://nixos.org/community
https://nixos.org/community
https://nix.dev/manual/nix/stable
https://github.com/NixOS/nix/issues
https://nixos.org/manual/nixpkgs/stable
https://nixos.org/manual/nixos/stable
https://github.com/NixOS/nixpkgs/issues
https://github.com/NixOS/nix/blob/master/CONTRIBUTING.md

nix.dev

6.1.4 Contribute to Nixpkgs

Tip: For a verbal introduction, watch the NixCon 2024 talk Becoming a Nixpkgs Contributor441.

Nixpkgs is a large software project with various areas of development. You can find inspiration for things to improve
in the Nixpkgs issue tracker442.
If you want to help, start with the contributing guide in the Nixpkgs repository on GitHub443 to get an overview
of the code and the contribution process. There are also programming-language-specific instructions444 for adding
packages.

6.1.5 Contribute to NixOS

NixOS is a collectively developed Linux distribution that can be configured conveniently in a highly flexible way
through declarative programming interfaces. The code for modules and default configurations is in the nixos di-
rectory of the nixpkgs GitHub repository445.
See the NixOS manual’s development section446 to get started with making improvements. Contributor documen-
tation specific to NixOS is still lacking, but most conventions for Nixpkgs contributions (page 169) apply. Help with
improving that is greatly appreciated.
Check issues labeled good-first-bug447 if you’re a new contributor. If you know your way around, working on
popular issues448 will be highly appreciated by other NixOS users.

6.2 How to get help

If you prepared a pull request and need help moving forward, check contributing-how-to-get-help449 for more infor-
mation.

6.3 How to get help

If you need assistance with one of your contributions, there are a few places you can go for help.
441 https://www.youtube.com/watch?v=eijTOBBbCv4
442 https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+-label%3A%226.topic%3A+nixos%22+-label%3A%226.topic%

3A+module+system%22+-label%3A%226.+topic%3A+nixos-container%22+sort%3Areactions-%2B1-desc
443 https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
444 https://nixos.org/manual/nixpkgs/unstable/#chap-language-support
445 https://github.com/NixOS/nixpkgs/tree/master/nixos
446 https://nixos.org/manual/nixos/stable/index.html#ch-development
447 https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+label%3A%223.skill%3A+good-first-bug%22+label%3A%226.topic%3A+

nixos%22
448 https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+label%3A%226.topic%3A+nixos%22+sort%3Areactions-%

2B1-desc
449 https://nix.dev/contributing/how-to-get-help#contributing-how-to-get-help

6.2. How to get help 169

https://www.youtube.com/watch?v=eijTOBBbCv4
https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+-label%3A%226.topic%3A+nixos%22+-label%3A%226.topic%3A+module+system%22+-label%3A%226.+topic%3A+nixos-container%22+sort%3Areactions-%2B1-desc
https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
https://nixos.org/manual/nixpkgs/unstable/#chap-language-support
https://github.com/NixOS/nixpkgs/tree/master/nixos
https://github.com/NixOS/nixpkgs/tree/master/nixos
https://nixos.org/manual/nixos/stable/index.html#ch-development
https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+label%3A%223.skill%3A+good-first-bug%22+label%3A%226.topic%3A+nixos%22
https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+label%3A%226.topic%3A+nixos%22+sort%3Areactions-%2B1-desc
https://nix.dev/contributing/how-to-get-help#contributing-how-to-get-help

nix.dev

6.3.1 How to find maintainers

For better efficiency and a higher chance of success, you should try contacting individuals or groups with more specific
knowledge first:

• If your contribution is for a package in Nixpkgs, look for its maintainers in the maintainers450 attribute.
• Check if any teams are responsible for the relevant subsystem:

– On the NixOS website451.
– In the list of Nixpkgs maintainer teams452.
– In the CODEOWNERS files for Nixpkgs453 or Nix454.

• Check the output of git blame455 or git log456 for the files you need help with. Take note of the email
addresses of people who committed relevant code.

6.3.2 Which communication channels to use

Once you’ve found the people you’re looking for, you can contact them on one of the community communication
platforms457:

• GitHub458

All the source code is maintained on GitHub. This is the right place to discuss implementation details.
In issue comments or pull request descriptions, mention the GitHub username459 found in the
maintainers-list.nix file460.

• Discourse461

Discourse is used for announcements, coordination, and open-ended questions.
Try the GitHub username found in the maintainers-list.nix file462 to mention or directly contact a
specific user. Note that some people use a different username on Discourse.

• Matrix463

Matrix is used for short-lived, timely exchanges, and direct messages.
To contact a maintainer, use their Matrix handle found in the maintainers-list.nix file464. If no
Matrix handle is present for a specific maintainer, try searching for their GitHub username, as most people
tend to use the same one across channels.
Maintainer teams sometimes have their own public Matrix room.

• Email
Use email addresses found with git log.

450 https://nixos.org/manual/nixpkgs/stable/#var-meta-maintainers
451 https://nixos.org/community/#governance-teams
452 https://github.com/NixOS/nixpkgs/blob/master/maintainers/team-list.nix
453 https://github.com/NixOS/nixpkgs/blob/master/ci/OWNERS
454 https://github.com/NixOS/nix/blob/master/.github/CODEOWNERS
455 https://git-scm.com/docs/git-blame
456 https://www.git-scm.com/docs/git-log
457 https://nixos.org/community
458 https://github.com/nixos
459 https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/

basic-writing-and-formatting-syntax#mentioning-people-and-teams
460 https://github.com/NixOS/nixpkgs/blob/master/maintainers/maintainer-list.nix
461 https://discourse.nixos.org
462 https://github.com/NixOS/nixpkgs/blob/master/maintainers/maintainer-list.nix
463 https://matrix.to/#/#community:nixos.org
464 https://github.com/NixOS/nixpkgs/blob/master/maintainers/maintainer-list.nix

170 Chapter 6. Contributing

https://nixos.org/manual/nixpkgs/stable/#var-meta-maintainers
https://nixos.org/community/#governance-teams
https://github.com/NixOS/nixpkgs/blob/master/maintainers/team-list.nix
https://github.com/NixOS/nixpkgs/blob/master/ci/OWNERS
https://github.com/NixOS/nix/blob/master/.github/CODEOWNERS
https://git-scm.com/docs/git-blame
https://www.git-scm.com/docs/git-log
https://nixos.org/community
https://nixos.org/community
https://github.com/nixos
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax#mentioning-people-and-teams
https://github.com/NixOS/nixpkgs/blob/master/maintainers/maintainer-list.nix
https://discourse.nixos.org
https://github.com/NixOS/nixpkgs/blob/master/maintainers/maintainer-list.nix
https://matrix.to/#/
https://github.com/NixOS/nixpkgs/blob/master/maintainers/maintainer-list.nix

nix.dev

• Meetings and events
Check the official NixOS Calendar465 and the Discourse community calendar466 for real-time or in-person
events. Some community teams hold regular meetings and publish their meeting notes.

6.3.3 Other venues

If you haven’t found any specific users or groups that could help you with your contribution, you can resort to asking
the community at large, using one of the following official communication channels:

• A room related to your question in the NixOS Matrix space467.
• The Help category468 on Discourse.
• The general #nix469 room on Matrix.

6.4 Contributing documentation

Thank you for your interest in helping improve documentation in the Nix ecosystem! This project would not be
possible without your support.

6.4.1 Getting started

Check the overview of documentation resources (page 172). Documentation contributions should follow the style
guide (page 176).
Get in touch with the Nix documentation team470 if you need more guidance.

Important: If you cannot contribute time, consider donating to the NixOS Foundation’s documentation project on
Open Collective471 to fund ongoingmaintenance and development of reference documentation and learningmaterials.

6.4.2 Feedback

Feedback is also a valuable contribution. Please share your thoughts in the Documentation category on Discourse472.

Nix beginners

Try to use official documentation as your primary resource, however incomplete it may appear.
Please open issues and report all problems or questions that arise. Also state your learning goals and the paths you
have taken so far.
Sharing your first-hand experience will help guide our efforts and solve recurrent problems with documentation for
you and everyone else.
465 https://calendar.google.com/calendar/u/0/embed?src=b9o52fobqjak8oq8lfkhg3t0qg@group.calendar.google.com
466 https://discourse.nixos.org/t/community-calendar/18589
467 https://matrix.to/#/#community:nixos.org
468 https://discourse.nixos.org/c/learn/9
469 https://matrix.to/#/#nix:nixos.org
470 https://nixos.org/community/teams/documentation
471 https://opencollective.com/nixos/projects/nix-documentation
472 https://discourse.nixos.org/c/dev/documentation/25

6.4. Contributing documentation 171

https://calendar.google.com/calendar/u/0/embed?src=b9o52fobqjak8oq8lfkhg3t0qg@group.calendar.google.com
https://discourse.nixos.org/t/community-calendar/18589
https://matrix.to/#/
https://discourse.nixos.org/c/learn/9
https://matrix.to/#/
https://nixos.org/community/teams/documentation
https://opencollective.com/nixos/projects/nix-documentation
https://opencollective.com/nixos/projects/nix-documentation
https://discourse.nixos.org/c/dev/documentation/25

nix.dev

Nix educators

You will probably have observed where learners get stuck most often, and which typical needs and questions they
have. You may have your own written notes for classes, trainings, or presentations.
Please share your experience to help us improve upstream documentation and beginner materials, so you can focus
on providing the best value to your students.

Domain experts using Nix

If you are proficient in applying Nix to a domain-specific problem, and want to share your expertise on best practices,
please check the existing content.

• Does existing material on your subject meet your standards?
• How could we improve it?
• Is there a popular application of Nix’s capabilities not yet covered?
• We would be glad to incorporate your insights.

6.4.3 Licensing and attribution

When opening pull requests with your own contributions, you agree to licensing your work under CC-BY-SA 4.0473.
When adding material made by others, make sure it has a license that permits this. In that case, unambiguously state
source, authors, and license in the newly added content. Ideally, notify the authors before using their work.
Add the original author as co-author474 to the first commit of your pull request, which should contain the original
document verbatim, so we can track authorship and changes through version history.
Using free licenses other than CC-BY-SA 4.0 is possible for individual documents. By contributing changes to those
documents you agree to license your work accordingly.

Note: If you have written a tutorial or guide related to Nix, please consider licensing it under CC-BY-SA 4.0! This
will allow us to feature your work as official documentation if it complements or improves upon existing materials.

Documentation resources

This is an overview of documentation resources for Nix, Nixpkgs, and NixOS, with suggestions for how you can help
to improve them.

Reference manuals

The reference manuals document interfaces and behavior, show examples, and define component-specific terms.
• Nix reference manual (page 156)

– source475

– issues476

– pull requests477

473 https://creativecommons.org/licenses/by-sa/4.0/
474 https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/

creating-a-commit-with-multiple-authors
475 https://github.com/NixOS/nix/tree/master/doc/manual
476 https://github.com/NixOS/nix/issues?q=is%3Aopen+is%3Aissue+label%3Adocumentation
477 https://github.com/NixOS/nix/pulls?q=is%3Aopen+is%3Apr+label%3Adocumentation

172 Chapter 6. Contributing

https://creativecommons.org/licenses/by-sa/4.0/
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://github.com/NixOS/nix/tree/master/doc/manual
https://github.com/NixOS/nix/issues?q=is%3Aopen+is%3Aissue+label%3Adocumentation
https://github.com/NixOS/nix/pulls?q=is%3Aopen+is%3Apr+label%3Adocumentation

nix.dev

• Nixpkgs reference manual478

– source479

– issues480

– pull requests481

• NixOS reference manual482

– source483

– issues484

– pull requests485

The respective manual sections are maintained by developers of the code being documented.
How to help:

• Add links to definitions, commands, options, etc. where only the name is mentioned
• Ensure consistent use of technical terms
• Check that examples are self-contained and follow best practices
• Expand on sections that appear incomplete

NixOS Wiki

NixOS Wiki486 is a collection of NixOS user guides, configuration examples, and troubleshooting tips. It is meant to
be complementary to the NixOS reference manual.
It is collectively edited by the NixOS user community.
How to help:

• Improve discoverability by adding categorisation and links to reference documentation
• Remove redundant or outdated information
• Add guides and sample configurations for your use cases

nix.dev

The purpose of nix.dev487 (source488) is to orient beginners in the Nix ecosystem.
The documentation team maintains nix.dev as editors.
How to help:

• Work on open issues489

478 https://nixos.org/manual/nixpkgs
479 https://github.com/NixOS/nixpkgs/tree/master/doc
480 https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+label%3A%226.topic%3A+documentation%22+-label%3A%226.

topic%3A+nixos%22
481 https://github.com/NixOS/nixpkgs/pulls?q=is%3Aopen+is%3Apr+label%3A%226.topic%3A+documentation%22+-label%3A%226.

topic%3A+nixos%22
482 https://nixos.org/manual/nixos
483 https://github.com/NixOS/nixpkgs/tree/master/nixos/doc/manual
484 https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+label%3A%226.topic%3A+documentation%22+label%3A%226.

topic%3A+nixos%22+
485 https://github.com/NixOS/nixpkgs/pulls?q=is%3Aopen+is%3Apr+label%3A%226.topic%3A+documentation%22+label%3A%226.

topic%3A+nixos%22+
486 https://wiki.nixos.org/
487 https://nix.dev
488 https://github.com/nixos/nix.dev
489 https://github.com/nixos/nix.dev/issues

6.4. Contributing documentation 173

https://nixos.org/manual/nixpkgs
https://github.com/NixOS/nixpkgs/tree/master/doc
https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+label%3A%226.topic%3A+documentation%22+-label%3A%226.topic%3A+nixos%22
https://github.com/NixOS/nixpkgs/pulls?q=is%3Aopen+is%3Apr+label%3A%226.topic%3A+documentation%22+-label%3A%226.topic%3A+nixos%22
https://nixos.org/manual/nixos
https://github.com/NixOS/nixpkgs/tree/master/nixos/doc/manual
https://github.com/NixOS/nixpkgs/issues?q=is%3Aopen+is%3Aissue+label%3A%226.topic%3A+documentation%22+label%3A%226.topic%3A+nixos%22+
https://github.com/NixOS/nixpkgs/pulls?q=is%3Aopen+is%3Apr+label%3A%226.topic%3A+documentation%22+label%3A%226.topic%3A+nixos%22+
https://wiki.nixos.org/
https://nix.dev
https://github.com/nixos/nix.dev
https://github.com/nixos/nix.dev/issues

nix.dev

• Review pull requests490

• Add guides or tutorials following the proposed outline491. New articles can be based on videos such as:
– The Nix Hour492 recordings
– some of the ~100 NixCon493 recordings
– Nix video guides494 by @jonringer.
– Summer of Nix 2022 talks495

Since writing a guide or tutorial is a lot of work, please make sure to coordinate with maintainers, for example
by commenting on or opening an issue.

Discourse

Nix users exchange information and support each other on these Discourse categories:
• Help496

• Guides497

• Links498

How to help:
• Ask informed questions, show your work
• Answer other people’s questions
• Address recurrent questions by updating or adding a NixOS Wiki article, nix.dev guide or tutorial, or one of
the reference manuals.

• Encourage and help people to incorporate their insights into official documentation

Nix Pills

Nix Pills499 is a series of low-level tutorials on building software packages with Nix, showing in detail how Nixpkgs
is made from first principles.
The Nix Pills are not actively maintained.

Documentation framework

We aim to build our documentation according to the Diátaxis framework for technical documentation500, which
divides documentation into four categories:

• Tutorials (page 175)
• Guides (page 175)
• Reference (page 175)
• Concepts (page 175)

490 https://github.com/nixos/nix.dev/pulls
491 https://github.com/NixOS/nix.dev/issues/572
492 https://www.youtube.com/watch?v=wwV1204mCtE&list=PLyzwHTVJlRc8yjlx4VR4LU5A5O44og9in
493 https://www.youtube.com/c/NixCon
494 https://www.youtube.com/user/elitespartan117j27
495 https://www.youtube.com/playlist?list=PLt4-_lkyRrOMWyp5G-m_d1wtTcbBaOxZk
496 https://discourse.nixos.org/c/learn/9
497 https://discourse.nixos.org/c/howto/15
498 https://discourse.nixos.org/c/links/12
499 https://nixos.org/guides/nix-pills/
500 https://diataxis.fr

174 Chapter 6. Contributing

https://github.com/nixos/nix.dev/pulls
https://github.com/NixOS/nix.dev/issues/572
https://www.youtube.com/watch?v=wwV1204mCtE&list=PLyzwHTVJlRc8yjlx4VR4LU5A5O44og9in
https://www.youtube.com/c/NixCon
https://www.youtube.com/user/elitespartan117j27
https://www.youtube.com/playlist?list=PLt4-_lkyRrOMWyp5G-m_d1wtTcbBaOxZk
https://discourse.nixos.org/c/learn/9
https://discourse.nixos.org/c/howto/15
https://discourse.nixos.org/c/links/12
https://nixos.org/guides/nix-pills/
https://diataxis.fr

nix.dev

We’ve found that contributors struggle to understand the differences between these categories, and while we strongly
recommend reading up on the Diátaxis framework, we can summarize them as follows:

Reference

Reference material should
• Focus on “what’s there”, simply listing which functions, classes, etc. exist
• Use terse language, with the text and layout optimized for scanning and random access
• Show relevant and complete usage examples
• Link to related items for better discoverability

Tutorials

Tutorials walk the user through a particular activity to teach them about common tools and patterns in the ecosystem.
While the activity itself is important, the goal is also to connect the dots between other things the reader has learned.
The structure of tutorials should minimise the cognitive load on learners, and actively avoid choices and opportunities
for user errors.

Guides

Guides are a list of steps showing how to achieve a specific goal or solve a specific problem. The goal is to help the
reader reach a specific end, not understand the underlying theory or broader context.
A guide assumes that the reader already has the background to understand the topic at hand and therefore doesn’t
need to explain the introduction of each new concept.

Concepts

Concepts describe the internals of a piece of code or how to think about a particular idea or entity in the ecosystem.
A concept can also describe the historical context behind why something works the way that it does today.
If you find yourself wanting to write about the nitty gritty details of how something works, you most likely want to
write an explanation.

Guides vs. Tutorials

We find that contributors primarily struggle with the difference between a Guide and a Tutorial.
Here are several explanations to help you understand the difference.

• A guide is used in a “working” context where the reader just wants a sequence of instructions to achieve an
outcome.

– In this context the reader may already know or may not care how or why these instructions work, they
just want to know what to do in order to achieve the desired result.

• A tutorial is used in a “learning” context where the reader is following a sequence of instructions to gain practice
performing a certain task.

– Some small bits of motivation or explanation are helpful in this context to help a reader connect the dots
with other things they may have already learned, but the focus is on the activity, not on how or why.

6.4. Contributing documentation 175

nix.dev

A helpful analogy is landing an airplane in two different contexts.
Let’s say the pilot is unconscious and you now have to land the plane to avoid a crash landing. In this context you just
want to know how not to die. You don’t care about how or why, you just want to be on the ground in one piece. This
is the context for a guide.
A pilot training in a flight simulator wants to practice landing the plane. The pilot-in-training needs practice knowing
when to deploy the landing gear, when to adjust flaps, etc. Actually landing the plane during the flight simulation is
less important than learning the individual skills that make up a successful landing. This is the context for a tutorial.
Finally, one last way of thinking about the difference between a how-to guide and a tutorial is like this:

• Guide: “step 1: do this, step 2: do that, etc”
• Tutorial: “take my hand as I show you how to do this”

Style guide

This document outlines the guidelines we use when writing documentation.

Writing style

Aim for clarity and brevity

I would have written a shorter letter, but I did not have the time.
— Blaise Pascal501

Readers’ time and attention are limited. Take the time to be extraordinarily respectful of their cognitive resources.
The same holds for communication directed to contributors and maintainers: This is a public project, and many
people will read what you write. Use this leverage with care.

• Follow the evidence-based plain language guidelines502.
– Don’t use jargon. Readers may not be familiar with particular technical terms.
– Don’t use long, complicated words if there are shorter, simpler words that convey the same meaning.

• Use the imperative voice when giving instructions. For example, write:
Add the python310 package to buildInputs.

Don’t use a conversational tone, as it distracts from the content. For example, don’t write:
Going forward, let’s now add the python310 package to buildInputs as we have seen in the
previous tutorial.

Use inclusive language

Adapted from Contributor Covenant503 and The Carpentries Code of Conduct504:
• Use welcoming and inclusive language
• Show empathy and respect towards other people
• Be respectful of different viewpoints and experiences
• Give and gracefully accept constructive criticism

501 https://en.m.wikiquote.org/w/index.php?title=Blaise_Pascal&oldid=2978584#Quotes
502 https://www.plainlanguage.gov/guidelines/
503 https://github.com/EthicalSource/contributor_covenant/blob/cd7fcf684249786b7f7d47ba49c23a6bcb3233eb/content/version/2/1/code_

of_conduct.md
504 https://github.com/carpentries/docs.carpentries.org/blob/fb188fa8d7f57ad85eb525091e335ed0d8fea16d/source/policies/coc/index.md#

L13-L19

176 Chapter 6. Contributing

https://en.m.wikiquote.org/w/index.php?title=Blaise_Pascal&oldid=2978584#Quotes
https://www.plainlanguage.gov/guidelines/
https://github.com/EthicalSource/contributor_covenant/blob/cd7fcf684249786b7f7d47ba49c23a6bcb3233eb/content/version/2/1/code_of_conduct.md
https://github.com/carpentries/docs.carpentries.org/blob/fb188fa8d7f57ad85eb525091e335ed0d8fea16d/source/policies/coc/index.md#L13-L19

nix.dev

• Focus on what is best for the community
Avoid idioms as they can be hard to understand for non-native English speakers.
Don’t try to be funny. Humor is highly culturally sensitive. At best, jokes may obfuscate the relevant instructions. At
worst, jokes may offend readers and invalidate our effort to help them learn.
Don’t use references to popular culture. What you may consider well-known may be entirely obscure and distracting
to people from different backgrounds.

Voice

Describe the subject factually and use the imperative voice in direct instructions.
Do not assume a personal relationship with readers, prefer clarity and brevity to emotional appeal.
Use “you” to refer to the reader and only use “we” to refer to the authors. Both should be rarely needed.
For example:

You will have to deploy secrets to the remote machine. We chose to show the explicit, manual process
using scp here, but there are various tools to automate that.

Be correct, cite sources

The only thing worse than no documentation is incorrect documentation. One way to ensure correctness is by citing
your sources. If you make a claim about how something works (e.g. that a command line argument exists), link to
official documentation for that subject. We would like to maintain a network of documentation, so linking to other
documentation helps to reinforce the documentation ecosystem.
It is explicitly encouraged to update or restructure the manuals where appropriate, to improve the overall experience.

Markup and source

Code samples

Always motivate code before showing it, describing in words what it is for or what it will do.

Counter-example

Run this command:

```bash
:(){ :|:& };:
```

Non-trivial examples may need additional explanation, especially if they use concepts from outside the given context.
Use a collapsed content box for explanation that would distract from the reading flow.

Example

Set off a [fork bomb](https://en.wikipedia.org/wiki/Fork_bomb):

```bash
:(){ :|:& };:
```

(continues on next page)

6.4. Contributing documentation 177

nix.dev

(continued from previous page)
:::{dropdown} Detailed explanation
This Bash command defines and executes a function `:` that recursively spawns␣
↪→copies of itself, quickly consuming system resources.
:::

Always explain code in the text itself. Use comments in code samples very sparingly, for instance to highlight a
particular aspect.
Readers tend to glance over large amounts of code when scanning for information, even if most of it is comments.
Especially beginners will likely find reading more complex-looking code strenuous and may therefore avoid it alto-
gether.
If a code sample appears to require a lot of inline explanation, consider replacing it with a simpler one. If that’s not
possible, break the example down into multiple parts, explain them separately, and then show the combined result at
the end.
Code samples that are intended to work should work.
If you are going to present an example that does not work (e.g. you’re illustrating a common mistake) explain this
beforehand. Many readers will get stuck trying to make example code work without reading ahead to find out that
the code isn’t intended to work.
Code samples should all include a programming language when applicable for syntax highlighting when rendered,
e.g.:

```python
print("Hello, World!")
```

Headers

Reserve the largest header (#) for the title.
Use Markdown headers ## through ### to divide up content in the body of the document. Finer-grained headings
are not necessarily better.

One line per sentence

Write one sentence per line.
This makes long sentences immediately visible. It also makes it easier to review changes and provide direct sugges-
tions, since the GitHub review interface is line-oriented.

Links

Use reference links505 – sparingly – to ease source readability. Put definitions close to their first use.

Example

We follow the [Diátaxis](https://diataxis.fr/) approach to structure documentation.
This framework distinguishes between [tutorials], [guides], [reference], and␣
↪→[explanation].

[tutorials]: https://diataxis.fr/tutorials/

(continues on next page)

505 https://github.github.com/gfm/#reference-link

178 Chapter 6. Contributing

https://github.github.com/gfm/#reference-link

nix.dev

(continued from previous page)
[guides]: https://diataxis.fr/how-to-guides/
[reference]: https://diataxis.fr/reference/
[explanation]: https://diataxis.fr/explanation/

Unless explicitly required to point to the latest version of an external resource, all references should be permanent
links506.
Many web services offer permalinks, such as:

• GitHub URLs to specific commits507

• Wikipedia URLs to specific page versions508

• Internet Archive “Save Page Now” for persisting web pages509

How to write a tutorial

This is a guide to writing tutorials about Nix.
By tutorials we mean lessons as described in the Diátaxis framework for technical documentation510, and recommend
becoming familiar with Diátaxis before proceeding. Especially note the difference between tutorials and guides511.

Target audience

Themain target audience of Nix tutorials are software developers with at least basic experience on the Linux command
line.
Experts answering questions immediately, personalised instructions and training, and other forms of apprenticeship
are known to be the most effective support for learning Nix. These tutorials are targeted at those who don’t have
access to any of that, and should therefore be written to be suitable for self-directed learning. This is achieved by
following the structure outlined here, which is primarily characterised by aiming to avoid and close all information
gaps for the learner.
As a byproduct, a well-written tutorial will be useful as lecture notes for use in interactive training sessions. Therefore,
the secondary target audience are instructors teaching Nix.

Process

Writing a high-quality tutorial takes some time – for you and others. Most of that time is typically spent collabora-
tively:

• Figuring out the right approach
• Ensuring that the instructions are neither too sparse nor too dense for learners
• Finding ever-more succinct and clear ways to convey ideas

Follow these steps to avoid redoing work
506 https://en.wikipedia.org/wiki/Permalink
507 https://docs.github.com/en/repositories/working-with-files/using-files/getting-permanent-links-to-files
508 https://en.wikipedia.org/wiki/Wikipedia:Linking_to_Wikipedia#Permanent_links_to_old_versions_of_pages
509 https://web.archive.org/save
510 https://diataxis.fr/
511 https://diataxis.fr/tutorials-how-to/

6.4. Contributing documentation 179

https://en.wikipedia.org/wiki/Permalink
https://en.wikipedia.org/wiki/Permalink
https://docs.github.com/en/repositories/working-with-files/using-files/getting-permanent-links-to-files
https://en.wikipedia.org/wiki/Wikipedia:Linking_to_Wikipedia#Permanent_links_to_old_versions_of_pages
https://web.archive.org/save
https://diataxis.fr/
https://diataxis.fr/tutorials-how-to/

nix.dev

Pick a topic

There is a tracking issue512 for tutorials that the documentation team has decided should exist as part of the tutorial
series. Pick an issue that covers a topic that you’re either knowledgeable about or have a particular interest in.
Check referenced issues and pull requests to make sure you won’t duplicate work that someone else has already
started!
There are more tutorial requests513 than captured in the outline. Open a new issue514 if what you wanted to work on
isn’t tracked anywhere. This is an opportunity for you to clarify your goals, and an opportunity for everyone else to
find out that there’s interest in that subject.

Submit a pull request with an outline

Submit a pull request with an outline of the tutorial following our recommended structure (page 180). The outline
should contain bullet points on each section’s content. Reference the tracking issue from the pull request description
to announce that you’re working on a tutorial.
A review will ensure you’re going in the right direction in terms of learning objectives and technical implementation.

Expand on the outline

Elaborate the contents of the tutorial following your outline and the Style guide (page 176).
A review will ensure that you get all the required information in the right order without overwhelming learners.

Follow up on review comments

Revise your tutorial based on the detailed feedback. We recommend testing your tutorial with friends or coworkers.
This will both help with revealing implicit prerequisites as well as provide a realistic estimate of the reading time.
A final review will check that everything is technically correct.

Structure

Each tutorial should answer the following questions.
In addition, we strongly recommend the book How Learning Works (summary)515 as a guide for designing learning
materials.

What will you learn?

Describe the problem statement and learning goals.
The learning goal of a tutorial is always acquiring a skill, which is distinguished by being applicable to a set of
situations with recurrent patterns.
512 https://github.com/NixOS/nix.dev/issues/572
513 https://github.com/NixOS/nix.dev/issues?q=is%3Aopen+is%3Aissue+label%3Atutorial
514 https://github.com/NixOS/nix.dev/issues/new?&template=tutorial.md
515 https://www.lesswrong.com/posts/mAdMkFqWzbJRB544m/book-review-how-learning-works

180 Chapter 6. Contributing

https://github.com/NixOS/nix.dev/issues/572
https://github.com/NixOS/nix.dev/issues?q=is%3Aopen+is%3Aissue+label%3Atutorial
https://github.com/NixOS/nix.dev/issues/new?&template=tutorial.md
https://www.lesswrong.com/posts/mAdMkFqWzbJRB544m/book-review-how-learning-works

nix.dev

What do you need?

State the prerequisite knowledge and skills. The tutorial should always be written such that the stated prerequisites
are sufficient to achieve the learning goals.
Examples:

• links to previous chapters
• domain-specific skills or knowledge

How long does it take?

Estimate the reading time. This is important for learners to make sure they have the capacity to achieve the planned
tasks and thus avoid frustration that may prevent them from continuing on their journey into the Nix ecosystem.
The estimate will depend on the learner’s pre-existing knowledge and proficiency. You can note how optional skills
or knowledge may influence reading time.

What to do?

Provide steps to achieve the learning goal. These should take the form of direct instructions which repeatably lead to
the desired outcome.
It is also worthwhile to add contextual explanations within :::{dropdown} blocks. This can help with under-
standing while keeping distractions minimal.

What did you learn?

Provide exercises or worked examples, and other means of self-assessment.
This is also a good place to offer the readers ways to give feedback or ask the authors questions in order to continue
improving the tutorial.

Next steps

Depending on how well a use case is explored, point the reader to
• reference manuals
• guides or other tutorials
• links to known-good external resources, with summaries
• overview of available support tools, and their state of maturity and maintenance
• overview of ideas, and the state of community discussion.

We recommend making an explicit separation of practical from theoretical learning resources, as then readers will
be able to quickly decide to either get things done or learn more.
External resources should have a summary to set expectations, ideally including reading time. Blog posts should have
their original title in the link, and (<author>, <year>): Give authors credit, give readers an idea of how up to
date the information is.

6.4. Contributing documentation 181

nix.dev

182 Chapter 6. Contributing

CHAPTER

SEVEN

ACKNOWLEDGEMENTS

7.1 Sponsoring

The following people and organisations have contributed to make this effort possible:
• @fricklerhandwerk516 serves as the team lead since 2023-02, sponsored by Antithesis517 from 2023-02 to
2024-04

• @zmitchell518 led the Learning Journey Working Group from 2023-03 to 2023-08, sponsored by flox519

• @infinisil520 worked on the team between 2022-11 and 2024-05, sponsored by Tweag521

• @lucperkins522 served as the team lead from 2022-11 to 2023-01, sponsored by Determinate Systems523

• @fricklerhandwerk524 served as the team lead from 2022-05 to 2022-10, sponsored by Tweag525

7.2 History

Many thanks to past contributors, who helped make Nix documentation what it is today:
• @infinisil526 helped lead the team between 2022-11 and 2024-05. During that time he provided diligent tech-
nical reviews of countless contributions, reworked the contribution guides for Nixpkgs527, and rewrote his
module system tutorial528 for publication.

• @olafklingt529 volunteered on the team from 2022-10 to 2024-05, and was a formal member between 2022-10
and 2024-05. He added an introduction to NixOS virtual machines530 and greatly simplified the tutorial on
NixOS VM tests531, and kept them up to date. Both articles enjoy great popularity and are central elements of
our tutorial series.

• @brianmcgee532 was part of the team from 2023-03 to 2023-10 and contributed to the Learning Journey
Working Group effort.

516 https://github.com/fricklerhandwerk
517 https://antithesis.com
518 https://github.com/zmitchell
519 https://floxdev.com
520 https://github.com/infinisil
521 https://tweag.io
522 https://github.com/lucperkins
523 https://determinate.systems
524 https://github.com/fricklerhandwerk
525 https://tweag.io
526 https://github.com/infinisil
527 https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
528 https://nix.dev/tutorials/module-system/deep-dive
529 https://github.com/olafklingt
530 https://nix.dev/tutorials/nixos/nixos-configuration-on-vm
531 https://nix.dev/tutorials/nixos/integration-testing-using-virtual-machines
532 https://github.com/brianmcgee

183

https://github.com/fricklerhandwerk
https://antithesis.com
https://github.com/zmitchell
https://floxdev.com
https://github.com/infinisil
https://tweag.io
https://github.com/lucperkins
https://determinate.systems
https://github.com/fricklerhandwerk
https://tweag.io
https://github.com/infinisil
https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md
https://nix.dev/tutorials/module-system/deep-dive
https://github.com/olafklingt
https://nix.dev/tutorials/nixos/nixos-configuration-on-vm
https://nix.dev/tutorials/nixos/integration-testing-using-virtual-machines
https://nix.dev/tutorials/nixos/integration-testing-using-virtual-machines
https://github.com/brianmcgee

nix.dev

• @zmitchell533 led the Learning Journey Working Group534 from 2023-03 to 2023-08 that added a number of
tutorials. He published regular updates on developments in documentation535 in that period.

• @Mic92536 was a founding member and part of the team from 2022-05 to 2023-01. Jörg had written a great
deal of documentation on the NixOS Wiki, and shared his experience to set a direction for the documentation
team.

• @domenkozar537 was a founding member and part of the team from 2022-05 to 2023-01. Domen originally
started nix.dev, wrote many basic tutorials, and funded editorial work through Cachix538. He helped bootstrap
the documentation team, handed out permissions, and advised us on many aspects. Domen donated nix.dev to
the NixOS Foundation in 2023-07.

533 https://github.com/zmitchell
534 https://discourse.nixos.org/search?q=learning%20journey%20working%20group%20-%20meeting%20notes%20in%3Atitle%20order%

3Alatest_topic
535 https://discourse.nixos.org/search?q=This%20Month%20in%20Nix%20Docs%20in%3Atitle%20before%3A2023-10-30%20order%

3Alatest_topic
536 https://github.com/Mic92
537 https://github.com/domenkozar
538 https://www.cachix.org/

184 Chapter 7. Acknowledgements

https://github.com/zmitchell
https://discourse.nixos.org/search?q=learning%20journey%20working%20group%20-%20meeting%20notes%20in%3Atitle%20order%3Alatest_topic
https://discourse.nixos.org/search?q=This%20Month%20in%20Nix%20Docs%20in%3Atitle%20before%3A2023-10-30%20order%3Alatest_topic
https://github.com/Mic92
https://github.com/domenkozar
https://www.cachix.org/

INDEX

N
Nix, 155
Nix expression, 155
Nix file, 155
Nix language, 155
NixOS, 155
Nixpkgs, 155

185

	Install Nix
	Verify installation

	Tutorials
	First steps
	Ad hoc shell environments
	Create a shell environment
	Running programs once
	Search for packages
	Run any combination of programs
	Check package versions

	Nested shell sessions
	Towards reproducibility
	References
	Next steps

	Reproducible interpreted scripts
	Requirements
	A trivial script with non-trivial dependencies
	The script
	Next steps

	Declarative shell environments with shell.nix
	Overview
	What will you learn?
	How long will it take?
	What do you need?

	Entering a temporary shell
	A basic shell.nix file
	Environment variables
	Startup commands
	References
	Next steps

	Towards reproducibility: pinning Nixpkgs
	Pinning packages with URLs inside a Nix expression
	Next steps

	Nix language basics
	Overview
	What will you learn?
	What do you need?
	How long does it take?
	How to run the examples?
	Interactive evaluation
	Evaluating Nix files

	Notes on whitespace

	Names and values
	Attribute set { ... }
	Recursive attribute set rec { ... }

	let ... in ...
	Attribute access
	with ...; ...
	inherit ...
	String interpolation ${ ... }
	Indented strings
	File system paths
	Lookup paths

	Functions
	Calling functions
	Multiple arguments

	Attribute set argument
	Default values
	Additional attributes

	Named attribute set argument

	Function libraries
	builtins
	import

	pkgs.lib

	Impurities
	Paths
	Fetchers

	Derivations
	Worked examples
	Shell environment
	NixOS configuration
	Package

	References
	Next steps
	Get things done
	Learn more

	Packaging existing software with Nix
	Introduction
	What will you learn?
	What do you need?
	How long does it take?

	Your first package
	A package function
	Building with nix-build
	Finding the file hash
	Build result

	A package with dependencies
	Fetching source from GitHub
	Missing dependencies

	Finding packages
	search.nixos.org
	Local code search
	Local derivation search
	Adding package sets as dependencies

	Fixing build failures
	installPhase
	Phases and hooks

	A successful build
	References
	Next steps

	Package parameters and overrides with callPackage
	Overview
	What will you learn?
	What do you need?
	How long does it take?

	Automatic function calls
	Parameterised builds

	Overrides
	Interdependent package sets
	Summary
	References
	Next steps

	Working with local files
	File sets
	Example project
	Adding files to the Nix store
	Difference
	Missing files
	Union (explicitly exclude files)
	Filter
	Union (explicitly include files)
	Matching files tracked by Git
	Intersection
	Conclusion

	Cross compilation
	What do you need?
	Platforms
	What’s a target platform?
	Determining the host platform config
	Choosing the host platform with Nix
	Specifying the host platform
	Cross compiling for the first time
	Real-world cross compiling of a Hello World example
	Developer environment with a cross compiler
	Next steps

	Module system
	What do you need?
	How long will it take?
	A basic module
	Declaring options
	Defining values
	Evaluating modules

	Module system deep dive
	Overview
	What will you learn?
	What do you need?

	The empty module
	Declaring options
	Evaluating modules
	Type checking
	Interlude: reproducible scripts
	Declaring more options
	Dependencies between options
	Accessing option values

	Conditional definitions
	Default values
	Wrapping shell commands
	Splitting modules
	The submodule type
	Defining options in other modules
	Nested submodules
	The strMatching type
	Functions as submodule arguments
	The either and enum types
	The pathType submodule
	The between constraint on integer values
	The pathStyle submodule
	Path styling: color
	Further styling
	Wrapping up

	NixOS
	Creating NixOS images
	Testing and deploying NixOS configurations
	Scaling up
	NixOS virtual machines
	What will you learn?
	What do you need?
	Starting from a default NixOS configuration
	Sample configuration

	Creating a QEMU based virtual machine from a NixOS configuration
	Running the virtual machine
	Running GNOME on a graphical VM
	Running Sway as Wayland compositor on a VM
	References
	Next steps

	Building a bootable ISO image
	Next steps

	Building and running Docker images
	Prerequisites
	Build your first container
	Run the container
	Working with Docker images
	Next steps

	Integration testing with NixOS virtual machines
	What will you learn?
	What do you need?
	Introduction
	The testers.runNixOSTest function
	Minimal example
	Running tests
	Interactive Python shell in the virtual machine
	Tests with multiple virtual machines
	Additional information regarding NixOS tests
	Next steps

	Provisioning remote machines via SSH
	Introduction
	What will you learn?
	What do you need?

	Prepare the environment
	Create a NixOS configuration
	Test the disk layout
	Deploy the system
	Update the system

	Next steps
	References

	Installing NixOS on a Raspberry Pi
	Booting NixOS live image
	Getting internet connection
	Updating firmware
	Installing and configuring NixOS
	Making changes
	Next steps

	Deploying NixOS using Terraform
	Booting NixOS image
	Deploying NixOS changes
	Caveats
	Next steps

	Setting up an HTTP binary cache
	Introduction
	What will you learn?
	What do you need?
	How long will it take?

	Set up services
	Generate a signing key pair
	Test availability
	Check general availability
	Check store object signing
	Serving the binary cache via HTTPS

	Next steps
	Alternatives
	References

	Setting up distributed builds
	Introduction
	What will you learn?
	What do you need?
	How long will it take?

	Create an SSH key pair
	Set up the remote builder
	Test authentication

	Set up distributed builds
	Test distributed builds
	Optimise the remote builder configuration
	Next steps
	Alternatives
	References

	Guides
	Recipes
	Configure Nix to use a custom binary cache
	Automatic environment activation with direnv
	Dependencies in the development shell
	Summary
	Complete example
	Next steps

	Automatically managing remote sources with npins
	Overriding sources
	Migrating from niv
	Next steps

	Setting up a Python development environment
	Next steps

	Setting up post-build hooks
	Implementation caveats
	Prerequisites
	Set up a signing key
	Implementing the build hook
	Updating Nix configuration
	Testing
	Conclusion

	Continuous integration with GitHub Actions
	Caching builds using Cachix
	1. Creating your first binary cache
	2. Setting up secrets
	3. Setting up GitHub Actions

	Next steps

	Best practices
	URLs
	Recursive attribute set rec { ... }
	with scopes
	<...> lookup paths
	Reproducible Nixpkgs configuration
	Updating nested attribute sets
	Reproducible source paths

	Troubleshooting
	What to do if a binary cache is down or unreachable?
	How to force Nix to re-check if something exists in the binary cache?
	How to fix: error: querying path in database: database disk image is malformed
	How to fix: error: current Nix store schema is version 10, but I only support 7
	How to fix: writing to file: Connection reset by peer
	macOS update breaks Nix installation

	Frequently Asked Questions
	Nix
	How to format Nix language code automatically?
	How to convert between paths and strings in the Nix language?
	How to build reverse dependencies of a package?
	How can I manage dotfiles in $HOME with Nix?
	What’s the recommended process for building custom packages?
	How to use a clone of the Nixpkgs repository to update or write new packages?

	NixOS
	How to run non-nix executables?
	How to build my own ISO?
	How do I connect to any of the machines in NixOS tests?
	How to bootstrap NixOS inside an existing Linux installation?

	Reference
	Glossary
	Nix reference manual
	Further reading
	Nix language tutorials
	Other articles
	Other videos

	Pinning Nixpkgs
	Possible URL values
	Examples
	Finding specific commits and releases

	Concepts
	Flakes
	What are flakes?
	Why are flakes controversial?
	Should I use flakes in my project?
	Further reading

	Frequently Asked Questions
	What is the origin of the name Nix?
	What are flakes?
	Which channel branch should I use?
	Stable
	Rolling

	Are there any impurities left in sandboxed builds?

	Contributing
	How to contribute
	Getting started
	Report an issue
	Contribute to Nix
	Contribute to Nixpkgs
	Contribute to NixOS

	How to get help
	How to get help
	How to find maintainers
	Which communication channels to use
	Other venues

	Contributing documentation
	Getting started
	Feedback
	Nix beginners
	Nix educators
	Domain experts using Nix

	Licensing and attribution
	Documentation resources
	Reference manuals
	NixOS Wiki
	nix.dev
	Discourse
	Nix Pills

	Documentation framework
	Reference
	Tutorials
	Guides
	Concepts
	Guides vs. Tutorials

	Style guide
	Writing style
	Aim for clarity and brevity
	Use inclusive language
	Voice
	Be correct, cite sources

	Markup and source
	Code samples
	Headers
	One line per sentence
	Links

	How to write a tutorial
	Target audience
	Process
	Pick a topic
	Submit a pull request with an outline
	Expand on the outline
	Follow up on review comments

	Structure
	What will you learn?
	What do you need?
	How long does it take?
	What to do?
	What did you learn?
	Next steps

	Acknowledgements
	Sponsoring
	History

	Index

